Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDSC’s Trestles Supercomputer Speeds Clean Energy Research

25.04.2012
A team of Harvard University researchers has been allocated time on the Trestles supercomputer at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego to perform computational calculations with the goal of creating the next generation of organic solar cells as an inexpensive and efficient source of energy.

The allocation is a key part of the team’s efforts to conduct larger, data-intensive computations related to its Clean Energy Project (CEP), which combines the group’s computational chemistry expertise with the large, distributed computing power of IBM’s World Community Grid (WCG).

Specifically, the CEP combines theory, computation, experiments, and grid computing by harvesting idle computing time from donors around the world using the WCG to perform ab initio computational quantum chemistry calculations on a large number of candidate molecules that could potentially form the next generation of solar cells. The complete CEP database will soon be made publicly available to the scientific community.

Despite the success of the CEP – more than 6 million molecular motifs of potential interest have been characterized and thousands of new molecules are being added to its database every day – the program’s research of larger, more complex datasets has been limited because the majority of WCG compute resources consist of home or office PCs and are on public networks, which create issues such as hardware heterogeneity, data transfer speeds, and tailoring of computing times according to the needs and interests of donors.

Enter SDSC’s Trestles system, a resource for modest-scale researchers who need to be as computationally productive as possible. Alán Aspuru-Guzik, an associate professor with Harvard University’s Department of Chemistry and Chemical Biology and head of the CEP initiative, was allocated more than 1.36 million service units, or core-hours, on Trestles through the National Science Foundation’s (NSF) Extreme Science and Engineering Discovery Environment, or XSEDE program, to perform these high-volume computations.

“Trestles allowed us to perform calculations on larger molecular systems that are difficult to calculate elsewhere,” said Aspuru-Guzik. “We were able to perform more complex calculations of systems with more than 300 electrons, which are currently impossible to run on smaller systems. As well as large molecules, the computing power of Trestles let us gather most interesting and promising candidate molecules at a higher level of theory, resulting in a much improved molecular characterization of those systems of interest.”

“Trestles is targeted to users such as Dr. Aspuru-Guzik, who have a large number of long-running, modest core-count jobs,” said Richard Moore, SDSC deputy director and head of SDSC’s data-enabled scientific computing program. “Our ability to provide flexible scheduling without long wait times enables XSEDE users to increase their research productivity.”

The ultimate goal of Aspuru-Guzik’s research is to reduce global dependency on fossil fuel-based economies by developing renewable energy-related technologies such as organic photovoltaics to provide inexpensive solar cells, polymers for the membranes used in fuel cells for electricity generation, and how best to assemble the molecules to make those devices.

“Solar cells are environmentally friendly but still very expensive investments,” said Aspuru-Guzik. “Highly engineered materials are needed, as well as novel designs for solar cells and fuel cells based on organic molecules, which often require compounds with very specific characteristics to efficiently capture and/or storage energy. To make them cost-competitive and more widely accessible, we need new, inexpensive materials that perform better than existing technologies.”

Solar cells built from organic compounds also have the potential of being inexpensive, non-hazardous, lightweight, and semi-transparent. Moreover, they can be easily processed and molded into any desired shape. But synthesizing organic molecules and characterizing them in a lab has been a difficult and time-consuming task, and only a few examples can be experimentally studied per year.

The data-intensive computational runs on SDSC’s Trestles are just one part of a larger effort to develop a broad database for the CEP during the next several months. Aspuru-Guzik and his team then plan to analyze the data for high-performance materials that could potentially lead to new energy technologies.

“Our challenge is to find the right class of molecules that absorb a broad spectrum of sunlight, and efficiently convert it into an easily usable form of energy, such as electricity,” said Suleyman Er, a postdoctoral research fellow at Harvard University and a member of Aspuru-Guzik’s team. “The CEP database provides on-demand access to specific compounds with a wide range of desired properties and electronic structures, but more powerful systems such as Trestles will both increase the speed and expand the scope of our research going forward, and our findings will be appreciated in many other fields of organic electronics.”

Additional CEP researchers include Sule Atahan-Evrenk, Roberto Olivares-Amaya, and Johannes Hachmann, postdoctoral research fellows at Harvard University, as well as Supriya Shrestha and Leon Liu, graduate students at Harvard. In addition to Harvard University and IBM’s WCG, the CEP is supported by the Stanford Global Climate and Energy Project (GCEP), and Molecular Networks GmbH, of Erlangen, Germany.

For a list of current CEP-related publications, please visit http://aspuru.chem.harvard.edu/the-clean-energy-project/.

Jan Zverina | Newswise Science News
Further information:
http://www.sdsc.edu

More articles from Power and Electrical Engineering:

nachricht Lights, camera, action... the super-fast world of droplet dynamics
26.02.2020 | University of Leeds

nachricht Turbomachine expander offers efficient, safe strategy for heating, cooling
25.02.2020 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>