Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists of the University of Graz have developed a tool to make optimum use of solar energy

10.03.2015

Photovoltaics is the only form of renewable energy that is able to cover today’s global energy demand and can even do so many times over. The diurnal cycle and the cycle of the seasons, however, mean that photovoltaics is unable to provide a constant power supply in one location.

Ao.Univ.-Prof. Dr. Karl Steininger from the Institute of Economics and the Wegener Center of the University of Graz and his team have developed an analysis tool that helps to make solar power available efficiently and constantly. The paper has just been published in the renowned Proceedings of the National Academy of Sciences.

Real weather values

“We determined the real solar radiation at 270 global sites by analysing the insolation shown for these sites in the NASA data of the past twenty years and transferring them to hourly values”, Steininger says. The scientists took this data as their starting point to derive the production capacity a photovoltaics plant of a given size would have at a certain time. “By means of our tool we are able to determine what combinations of panel surface and storage capacity make sense from an economic perspective”, the economist explains.

In order to supply the minimum energy required, the plants are either dimensioned large enough to produce sufficient electricity even in overcast conditions or when insolation levels are low during winter, or the storage capacities are of such vast dimensions that seasonal and/or bad weather losses can be evened out.

“The price of the modules is currently declining more rapidly than the price of storage systems which makes larger photovoltaic surfaces often the more logical choice”, the expert says. And space is certainly not a problem. Steininger: “It would take a mere two percent of the world’s desert areas to supply the whole world with energy at its current demand level.”

The new analytical tool also helps to combine several photovoltaic plants at different global sites in an economically efficient manner. “If we combine sufficiently remote eastern and western sites, there will always be daytime somewhere in the grid and the excess energy can be transmitted to the places where the sun is not above the horizon.” The same is true for a combination of sites on the northern and southern hemisphere. “In summer, Austria is able to produce four times the solar energy volume it can generate in winter”, Steininger says. Transmission costs are currently significantly lower than storage costs.

Efficient management

The tool is also very useful for energy suppliers inasmuch as it allows them to respond to current weather situations and use their own photovoltaic systems in an optimum manner. The technologies for storing the generated electrical power differ in price and efficiency. When clouds are forecast plant managers could activate additional storage for example, and thus save the costs of storage in lasting high-pressure periods.

Steininger and his team have used a theoretical concept of “isolines” from economics for this interdisciplinary application. The concept ensures a constant output level and has been demonstrated to be of practical value for economic optimization here in situations of variable conditions of solar insolation.

For inquiries please contact:
Ao.Univ.-Prof. Dr. Karl Steininger
Institute of Economics and Wegener Center for Climate and Global Change
Universitity of Graz
Phone: +43 664 8463147
E-Mail: karl.steininger@uni-graz.at

Weitere Informationen:

http://www.pnas.org/content/early/2015/03/06/1316781112

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

More articles from Power and Electrical Engineering:

nachricht Studying how unconventional metals behave, with an eye on high-temperature superconductors
13.12.2018 | Princeton University

nachricht An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes
13.12.2018 | Rutgers University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>