Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotary Valve Could Help Propel Craft to Mars One Day

05.04.2013
A rotary fuel delivery valve developed by a University of Alabama in Huntsville team led by Dr. James Blackmon just might help us get manned space flights out of our immediate neighborhood one day, and he says it could have practical terrestrial applications.

Dr. Blackmon, a principal research engineer at the university’s Propulsion Research Center, figures that to travel to places like Mars and beyond we’ll first have to decide what kind of fuel delivery system we’ll use to feed the rocket engines and then we’ll have to determine how we’re going to rebuild or maintain that system during long stays in space. That’s where the new valve comes in.


Michael Mercier / UAHuntsville

Dr. James Blackmon in his office with plastic models of the rotary valve made with a 3-D printer and a stainless steel version.

“There are two primary propellant feed systems, a pressurized system and a turbo pump system,” he said. The pressurized system uses tank pressure to deliver fuel. “These are fine as long as the system uses less than 300 psi pressure.” The turbo pump system uses an exhaust gas generator to power the pump. “That works up to 3,000 psi and the higher pressure gives you higher performance.”

A third system known as sequential pumping lies between those two and may be best suited for long-distance travel. In that configuration, three fuel tanks are pressurized in sequential rotation from a main tank. As the first tank is about to be expended, valves switch from it to the second tank, and then subsequently to the third tank, then back to the first tank, and so on. Tanks not being used to fire the engine are being recharged in rotation from the main tank.

“This system gives you both high pressure and fail operational ability,” Dr. Blackmon says. Rather than redundancy, where parts are duplicated so new ones can take over for failed ones, fail operational ability means that even if components in the system fail, the engine will continue to operate.

“Rocket systems are typically designed so they can sustain one failure and be safe, but to have fail operational ability is great because you don’t have to lose your mission” Dr. Blackmon said. “It is very cheap, very reliable and it gives you the same delivered payload as a turbo pump.”

The sequential system has a three to one advantage because of its lower weight, lower cost and greater reliability, but if there’s one drawback to it, it’s the valves.

“Valves are often the source of trouble in spaceflight,” Dr. Blackmon said. “You have these plunger valves slamming open or slamming closed, or ball valves clunking full open and clunking full closed.”

That’s a lot of wear and tear over time, and here is where the new rotary valve excels. It uses a mechanism operated by one of two redundant motors to turn a shaft and slide a configured recess to a port, opening that port for either fuel delivery or recharge. One valve can control filling and emptying of all three rotational fuel tanks in the sequential system, and it can replace multiple older style valves with a device that is lower weight, lower cost and more reliable.

“You can do it with standard valves but we think it’s better to do it with this because a standard valve is so difficult to repair,” Dr. Blackmon said. When it comes time for service, the rotational valve is an easy fix.

“You can use a Crescent wrench and take it apart,” said Dr. Blackmon. “It uses simple tools to fix it, and you can do it in space. If you’re going to Mars and an astronaut had to fix it, you could fix it easily with a valve repair kit without having to remove the valve. You just block it off and fix it.”

Two 3-D printed plastic rotary valve prototypes and a milled stainless steel prototype reside in Dr. Blackmon’s office, and he uses them to illustrate its operation.

“We can change the flow rate in a controlled way by the contours in the flow path and also by the rate at which you rotate the valve,” he said. “That way, as the first tank is tailing off, you can gradually increase the second tank for smooth operation. You’re not slamming valves open and closed, and it makes it much smoother in operation.”

The valve was developed and tested using just $5,000 gained as part of the Space Act Agreement initiatives for development, engineering and testing of design concepts. The money allowed former UAHuntsville graduate students David Eddleman and Chris Morton to work on design and testing in conjunction with James Richard of the Engineering Directorate at Marshall Space Flight Center. Eddleman is now an MSFC employee. MSFC testing facilities were used to test and prove the valve’s operation, as well as facilities at UAHuntsville.

Cheaper, lighter weight, dependable and easy to fix. But will it ever fly?

“That’s a very good question,” Dr. Blackmon said. “The problem is that it’s very tough to get technical funding to develop a new idea, because what we have right now works. What we tried to do in testing was to demonstrate that the rotary valve does work like we said it will.”

For now, he’s also looking at uses for the valve in industrial flow control. ”It might have applications in industry,” Dr. Blackmon said, “if they want a durable valve in the field that’s easy to fix, where you can keep the valve in place while you fix it.”

Jim Steele | Newswise
Further information:
http://www.uah.edu

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>