Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use light to remotely control curvature of plastics

23.03.2017

Researchers at North Carolina State University have developed a technique that uses light to get two-dimensional (2-D) plastic sheets to curve into three-dimensional (3-D) structures, such as spheres, tubes or bowls.

The advance builds on earlier work by the same research team, which focused on self-folding 3-D structures. The key advance here is that rather than having the plastic fold along sharp lines -- into polygonal shapes such as cubes or pyramids -- the plastics bend and curve.


Researchers at North Carolina State University have developed a technique that uses light to get flat, plastic sheets to curve into shapes such as spheres, tubes or bowls.

Credit: Amber Hubbard

Researchers Michael Dickey, a professor of chemical and biomolecular engineering at NC State, and Jan Genzer, the S. Frank and Doris Culberson Distinguished Professor in the same department, were early leaders in the field of self-folding 3-D structures.

In their landmark 2011 paper, the researchers outlined a technique in which a conventional inkjet printer is used to print bold black lines onto a pre-strained plastic sheet. The plastic sheet was then cut into a desired pattern and placed under an infrared light, such as a heat lamp.

The printed lines absorbed more energy from the infrared light than the rest of the material, causing the plastic to heat and contract -- creating a hinge that folded the sheets into 3-D shapes. By varying the width of the printed lines, or hinges, the researchers were able to change how far -- and how quickly -- each hinge folds. The technique is compatible with commercial printing techniques, such as screen printing, roll-to-roll printing, and inkjet printing, that are inexpensive and high-throughput but inherently 2-D.

But now they're using a similar approach to accomplish a very different result.

"By controlling the number of lines and the distribution of ink on the surface of the material, we can produce any number of curved shapes," says Dickey, co-corresponding author of a paper on the self-curving plastics. "All of the shapes use the same amount of ink; it's simply a matter of where the ink is applied on the plastic." Note: video demonstrating the technique can be seen at https://www.youtube.com/watch?v=2Iqq8lIrri8&feature=youtu.be.

"Our work was inspired by nature, because natural shapes rarely incorporate crisp folds, instead opting for curvature," says Amber Hubbard, a Ph.D student at NC State and co-lead author of the paper. "And we found that, in order to make functional objects, we often needed to use a combination of curved and folded shapes.

"Other researchers have developed techniques for creating self-curving materials, but they did this using soft materials, such as hydrogels," Hubbard adds. "Our work is the first attempt to accomplish the same using thermoplastics -- which are stronger and stiffer than the soft materials. That makes them more attractive for use in performing some practical actions, such as gripping an object."

"The materials we're working with also hold their shape, even after the light is removed," says Russell Mailen, a Ph.D student at NC State and co-lead author of the paper. "That's an advantage, because soft materials change shape only when exposed to a solvent, and once they are removed from the solvent they lose their shape."

The researchers have also developed a computational model that can be used to predict the 3-D shape that will be produced by any given printing pattern.

"One of our goals is to fine-tune this model, which Mailen developed," Genzer, co-corresponding author, states. "Ultimately, we'd like to be able to input a desired 3-D shape into the model and have it create a pattern that we can print and produce."

###

The paper, "Controllable curvature from planar polymer sheets in response to light," is published in the Royal Society of Chemistry journal Soft Matter and was selected by the journal to be featured on the cover. The paper was co-authored by Mohammed Zikry, the Zan Prevost Smith Distinguished Professor of Mechanical and Aerospace Engineering at NC State. The work was supported by the National Science Foundation under grants 1240438 and DGE-1252376.

Media Contact

Matt Shipman
matt_shipman@ncsu.edu
919-515-6386

 @NCStateNews

http://www.ncsu.edu 

Matt Shipman | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>