Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report advances in stretchable semiconductors, integrated electronics

04.02.2019

Researchers from the University of Houston have reported significant advances in stretchable electronics, moving the field closer to commercialization.

In a paper published Friday, Feb. 1, in Science Advances, they outlined advances in creating stretchable rubbery semiconductors, including rubbery integrated electronics, logic circuits and arrayed sensory skins fully based on rubber materials.


Researchers from the University of Houston have reported significant advances in the field of stretchable, rubbery electronics.

Credit: University of Houston

Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering at the University of Houston and corresponding author on the paper, said the work could lead to important advances in smart devices such as robotic skins, implantable bioelectronics and human-machine interfaces.

Yu previously reported a breakthrough in semiconductors with instilled mechanical stretchability, much like a rubber band, in 2017.

This work, he said, takes the concept further with improved carrier mobility and integrated electronics.

"We report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility ... obtained by introducing metallic carbon nanotubes into a rubbery semiconductor with organic semiconductor nanofibrils percolated," the researchers wrote. "This enhancement in carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance."

Carrier mobility, or the speed at which electrons can move through a material, is critical for an electronic device to work successfully, because it governs the ability of the semiconductor transistors to amplify the current.

Previous stretchable semiconductors have been hampered by low carrier mobility, along with complex fabrication requirements. For this work, the researchers discovered that adding minute amounts of metallic carbon nanotubes to the rubbery semiconductor of P3HT - polydimethylsiloxane composite - leads to improved carrier mobility by providing what Yu described as "a highway" to speed up the carrier transport across the semiconductor.

###

In addition to Yu, the paper's researchers include first author Kyoseung Sim, and co-authors Zhoulyu Rao, Anish Thukral and Hyunseok Shim, all of UH, and Hae-Jin Kim, a former postdoctoral researcher at UH who is now with Gyeongsang National University in Jinju, Korea.

Future work, Yu said, will involve further raising the carrier mobility and building more complex, hierarchy and high level integrated digital circuits to meet the requirements for integrated circuits, biomedical and other applications.

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events

Jeannie Kever | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Blue OLED on Silicon Sensor detects Phosphorescence
29.01.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Static electricity could charge our electronics
28.01.2019 | University at Buffalo

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Invisible tags: Physicists at TU Dresden write, read and erase using light

A team of physicists headed by Prof. Sebastian Reineke of TU Dresden developed a new method of storing information in fully transparent plastic foils. Their innovative idea was now published in the renowned online journal “Science Advances”.

Prof. Reineke and his LEXOS team work with simple plastic foils with a thickness of less than 50 µm, which is thinner than a human hair. In these transparent...

Im Focus: IT in cars: Computers on standby

In the future, cars will exchange data via radio and warn each other about obstacles and accidents. There are currently various radio standards in existence to allow this. However, it is almost impossible to compare them, because the requisite hardware is not yet on the market. To address this lack, researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a software system that will enable users to analyze the future wireless technology. For manufacturers, this is an ideal solution for testing interesting radio applications at an early stage.

Slowly but surely, the automobile is developing into the autonomous vehicle, as new functions are added with each new generation. Proximity radars are by now...

Im Focus: Making ultrafast lasers faster

Lasers with ultrashort pulses in the picosecond and femtosecond range are often referred to as ultrafast lasers. They are known for their ultra-precise ablation and cutting results. Unfortunately, processing with such lasers takes time. To address this issue, a new research project, funded by the European Commission, aims to make material processing with ultrafast lasers up to a hundred times faster.

Ultrashort pulsed (USP) or ultrafast lasers can do something very unique: They ablate almost any material without causing a thermal load of the adjacent...

Im Focus: New analysis methods facilitate the evaluation of complex engineering data

A further increase in the performance of supercomputers is expected over the next few years. So-called exascale computers will be able to deliver more precise simulations. This leads to considerably more data. Fraunhofer SCAI develops efficient data analysis methods for this purpose, which provide the engineer with detailed insights into the complex technical contexts.

Simulations on supercomputers answer important industrial questions, such as how air flows behave in air conditioning systems, on rotor blades or for entire...

Im Focus: Researchers wild about zigzags

Breakthrough in graphene research: large, stable pieces of graphene produced with unique edge pattern

Graphene is a promising material for use in nanoelectronics. Its electronic properties depend greatly, however, on how the edges of the carbon layer are formed.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

 
Latest News

Computational algorithm to reduce electromagnetic noise in electronic circuits developed

04.02.2019 | Information Technology

Simply shining light on dinosaur metal compound kills cancer cells

04.02.2019 | Health and Medicine

Invisible tags: Physicists at TU Dresden write, read and erase using light

04.02.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>