Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers introduce novel heat transport theory in quest for efficient thermoelectrics


NCCR MARVEL researchers have developed a novel microscopic theory that is able to describe heat transport in very general ways, and applies equally well to ordered or disordered materials such as crystals or glasses and to anything in between. This is not only a significant first--no transport equation has been able so far to account simultaneously for these two regimes--it also shows, surprisingly, that heat can tunnel, quantum-mechanically, rather than diffuse away, like an atomic vibration.

The new equation will also allow the accurate prediction of the performance of thermoelectric materials for the first time. With ultralow, glass-like, thermal conductivity, such materials are one of the holy grails of energy research: they can turn heat into electricity or use electricity for cooling without needing to resort to pumps and environmentally harmful gases.

Heat conduction originates from both particle-like diffusion of phonon wave-packets (blurred spheres, following the realistic 3D phonon dispersion of CsPbBr3) and wave-like tunneling (blue waves). Tunneling emerges when the spacings between phonon branches (Lorentzian-shaped ridges, whose heights quantify the heat carried) become comparable to their line-widths (proportional to the widths of the ridges).

Credit: Michele Simoncelli, EPFL

Crystals and glasses conduct heat in fundamentally different ways: the regular arrangement of atoms in a crystal means that heat is conducted by the propagation of vibrational waves - this is what happens, for instance, in a silicon chip inside your computer.

In glasses, which are disordered down to the atomic scale, heat is transferred much more slowly by a random hopping of vibrations. In 1929, the physicist Rudolf Peierls laid the foundations for describing heat transfer, applying to crystals the still recent transport theory of Boltzmann, and deriving the celebrated transport equation for phonons--it has been the stalwart of microscopic theories of heat transfer ever since.

After many decades, and helped by the rapidly developing field of molecular dynamics simulations, Philip Allen and Joseph Feldman followed up in 1989 with an equation applicable to glasses. Now, MARVEL scientists have figured out how to derive a more general formulation that describes equally well both classes of materials, as well as everything in between.

In the paper Unified theory of thermal transport in crystals and glasses, out now in Nature Physics, EPFL PhD student Michele Simoncelli, together with Nicola Marzari, director of NCCR MARVEL, and a professor in the Institute of Materials, and colleague Francesco Mauri at the University of Rome La Sapienza derive from a general theory for dissipative quantum systems the microscopic equation that takes into account both the particle-like and the wave-like characteristics of heat transfer.

It turns out that Peierls had discarded a key component in heat propagation, where vibrational excitations can tunnel, quantum-like, from one state to another. While such tunneling contributions are negligible in perfect crystals, they become more and more relevant as a system becomes disordered, and in a glass they give rise, at low temperatures, to the Allen-Feldman formalism.

But the new equation is much more general and can be applied with equal accuracy to any material, encompassing the emergence and coexistence of all known vibrational excitations. Critically, this new theory of heat conduction covers the materials that are both crystal-like and glass-like: these have major technological importance, because they can be very good thermoelectrics, that is, materials that can convert heat into electricity, or electricity into cooling.

Thermoelectric materials could be tremendously important in energy applications because they generate electricity from available or "waste" heat such as that coming from our industrial processes, car and truck engines, or simply from the sun.

Having thermoelectric materials that are more efficient (around three times the current standard) would change completely all our refrigeration and air-conditioning technologies completely because thermoelectric materials can be used in reverse and exploit electricity to cool us down, rather than producing electricity out of heat.

(And if you think that studying refrigerators is distinctively uncool (pun intended), it's worth remembering that Albert Einstein worked on refrigerators for 8 years, from 1926 to 1934, and at the height of his intellectual powers, together with his student Leó Szilárd - he even patented a refrigerator with no moving parts, as would happen in a thermoelectric fridge).

Creating such devices however requires a thorough understanding of how and to what extent heat conducts. And until now, theory and modelling has had limited success. A good thermoelectric needs to be an electrical conductor, and thus quite crystalline, but also a thermal insulator, and thus quite glassy--it needs to be able to carry and condense positive and negative charges on two different sides of a device, creating an electrical potential.

Trying to treat thermoelectrics as either crystals or glasses in terms of the heat transport equations available until now however would result in very large errors and so it has been very difficult to predict their efficiency.

The new understanding outlined in the paper and more accurate estimates of thermal conductivity, along with data on the electrical conductivity, will allow scientists to calculate the "figure of merit" of thermoelectrics, and provide an estimate of their efficiency. Armed with this key piece of information, researchers will be able to screen potential materials first with computational techniques, accelerating the development path for these new technologies.

Nicola Marzari | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht No more trial-and-error when choosing an electrolyte for metal-air batteries
15.07.2019 | Washington University in St. Louis

nachricht Solar power with a free side of drinking water
11.07.2019 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>