Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a way to significantly reduce the production costs of fuel cells

20.12.2011
Researchers at Aalto University in Finland have developed a new and significantly cheaper method of manufacturing fuel cells.

A noble metal nanoparticle catalyst for fuel cells is prepared using atomic layer deposition (ALD). This ALD method for manufacturing fuel cells requires 60 per cent less of the costly catalyst than current methods.

This is a significant discovery, because researchers have not been able to achieve savings of this magnitude before with materials that are commercially available, says Docent Tanja Kallio of Aalto University.

Fuel cells could replace polluting combustion engines that are presently in use. However, in a fuel cell, chemical processes must be sped up by using a catalyst. The high price of catalysts is one of the biggest hurdles to the wide adoption of fuel cells at the moment.

The most commonly used fuel cells cover anode with expensive noble metal powder which reacts well with the fuel. By using the Aalto University researchers’ ALD method, this cover can be much thinner and more even than before which lowers costs and increases quality.

With this study, researchers are developing better alcohol fuel cells using methanol or ethanol as their fuel. It is easier to handle and store alcohols than commonly used hydrogen. In alcohol fuel cells, it is also possible to use palladium as a catalyst. The most common catalyst for hydrogen fuel cells is platinum, which is twice as expensive as palladium. This means that alcohol fuel cells and palladium will bring a more economical product to the market.

Fuel cells can create electricity that produces very little or even no pollution. They are highly efficient, making more energy and requiring less fuel than other devices of equal size. They are also quiet and require low maintenance, because there are no moving parts.

In the future, fuel cells are expected to power electric vehicles and replace batteries, among other things. Despite their high price, fuel cells have already been used for a long time to produce energy in isolated environments, such as space crafts. These results are based on preliminary testing with fuel cell anodes using a palladium catalyst. Commercial production could start in 5-10 years.

This study was published in the Journal of Physical Chemistry C.
Journal reference: Atomic Layer Deposition Preparation of Pd Nanoparticles on a Porous Carbon Support for Alcohol Oxidation. The Journal of Physical Chemistry C, 2011, 115, 23067–23073. dx.doi.org/10.1021/jp2083659. The research has been funded by Aalto University’s MIDE research program and the Academy of Finland.

Press photos: http://media.digtator.fi/digtator/tmp/1c28a069421e14be5efa2ceaee757327/preview.html

For further information:
Docent Tanja Kallio
School of Chemical Technology, Aalto University
tanja.kallio@aalto.fi
tel. +358 9 470 225 83
Johanna Juselius, Aalto University Communications
johanna.juselius@aalto.fi
tel. +358 50 372 7062
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 4,700 of which 340 are professors.

Johanna Juselius | Aalto University
Further information:
http://www.aalto.fi

More articles from Power and Electrical Engineering:

nachricht The holy grail of nanowire production
20.02.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Combining infrared radiation and air management to reduce energy use
19.02.2019 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A landscape of mammalian development

21.02.2019 | Life Sciences

Surprising findings on forest fires

21.02.2019 | Earth Sciences

Atopic dermatitis: elevated salt concentrations in affected skin

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>