Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a path to liquid solar cells that can be printed onto surfaces

26.04.2012
Liquid solar cells are cheaper, more flexible than existing solar options

Scientists at USC have developed a potential pathway to cheap, stable solar cells made from nanocrystals so small they can exist as a liquid ink and be painted or printed onto clear surfaces.

The solar nanocrystals are about four nanometers in size — meaning you could fit more than 250,000,000,000 on the head of a pin — and float them in a liquid solution, so "like you print a newspaper, you can print solar cells," said Richard L. Brutchey, assistant professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences.

Brutchey and USC postdoctoral researcher David H. Webber developed a new surface coating for the nanocrystals, which are made of the semiconductor cadmium selenide. Their research is featured as a "hot article" this month in the international journal for inorganic chemistry Dalton Transactions.

Liquid nanocrystal solar cells are cheaper to fabricate than available single-crystal silicon wafer solar cells but are not nearly as efficient at converting sunlight to electricity. Brutchey and Webber solved one of the key problems of liquid solar cells: how to create a stable liquid that also conducts electricity.

In the past, organic ligand molecules were attached to the nanocrystals to keep them stable and to prevent them from sticking together. These molecules also insulated the crystals, making the whole thing terrible at conducting electricity.

"That has been a real challenge in this field," Brutchey said.

Brutchey and Webber discovered a synthetic ligand that not only works well at stabilizing nanocrystals, but actually builds tiny bridges connecting the nanocrystals to help transmit current.

With a relatively low-temperature process, the researchers' method also allows for the possibility that solar cells can be printed onto plastic instead of glass without any issues with melting – resulting in a flexible solar panel that can be shaped to fit anywhere.

As they continue their research, Brutchey said he plans to work on nanocrystals built from materials other than cadmium, which is restricted in commercial applications due to toxicity.

"While the commercialization of this technology is still years away, we see a clear path forward toward integrating this into the next generation of solar cell technologies," Brutchey said.

This research was funded by the National Science Foundation and USC Dornsife.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Power and Electrical Engineering:

nachricht Mobile measuring instruments: Caught in flight
07.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht PCB-embedded GaN-on-Si half bridge circuits for modular use
06.07.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>