Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Mainz University synthesize new liquid crystals that will allow the directed transmission of electricity

01.10.2019

Organic power cable for electronic components

Liquid and solid – most people are unaware that there can be states in between. Liquid crystals are representative of one such state. While the molecules in liquids swim around at random, neighboring molecules in liquid crystals are aligned as in regular crystal grids, but the material is still liquid.


The structural formula of liquid crystals superimposed on an image of the liquid crystal phase prepared using a polarized light microscope together with examples of the fluorescence exhibited by liquid crystals in various solvents (bottom right)

Ill./©: Natalie Tober, JGU

Liquid crystals are thus an example of an intermediate state that is neither really solid nor really liquid. They flow like a liquid, and yet their molecules are grouped in small, regularly ordered units. A particular application of liquid crystals is optical imaging technology as in the screens of televisions, smartphones, and calculators. All LCD – or liquid crystal display – devices use these molecules.

Researchers at the Institute of Organic Chemistry at Johannes Gutenberg University Mainz (JGU) have synthesized novel liquid crystals in a project sponsored by the German Research Foundation (DFG). "If you slowly cool our liquid crystalline materials, the molecules align in a self-assembly process to form columns," explained Professor Heiner Detert of JGU.

"We can imagine these columns like piles of beer mats stacked one on top of the other. But the special thing is that these columns conduct electrical energy along their whole length." The materials can thus serve as organic, liquid crystalline "power cables" and provide targeted electricity transmission in electronic components.

While most materials conduct positive charges carried by holes, the new molecules actually conduct electrons. An additional advantage of a liquid crystalline power cable is that if it ruptures, any such rupture will heal entirely by itself.

The researchers have identified a particularly interesting effect exhibited by their synthesized molecules: If a single molecule is stimulated by exposure to UV light, it will glow in response. If the concentration of the molecule increases, this effect disappears only to reappear again when the concentration continues to increase. If the molecules are suspended in a solvent or arranged on a film, they will fluoresce in various colors when irradiated with UV light.

Detert and his team together with Professor Matthias Lehmann of the Julius-Maximilians-Universität Würzburg recently published their results in Chemistry – A European Journal. Experts classified the research results as exceptionally significant and the journal editors selected the article as a Hot Paper. The lead author, Natalie Tober, is supported by a scholarship awarded by the Carl Zeiss Foundation.


Image:
http://www.uni-mainz.de/bilder_presse/09_org_chemie_fluessigkristalle_stromleitu...
The structural formula of liquid crystals superimposed on an image of the liquid crystal phase prepared using a polarized light microscope together with examples of the fluorescence exhibited by liquid crystals in various solvents (bottom right)
Ill./©: Natalie Tober, JGU

Wissenschaftliche Ansprechpartner:

Professor Dr. Heiner Detert
Institute of Organic Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-24189
fax +49 6131 39-25338
e-mail: detert@uni-mainz.de
https://www.blogs.uni-mainz.de/fb09ak-detert/ [in German]

Originalpublikation:

Publication:
N. Tober et al., Synthesis, Thermal, and Optical Properties of Tris(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)‐1,3,5‐triazines, New Star‐shaped Fluorescent Discotic Liquid Crystals, Chemistry – A European Journal, 19. August 2019
DOI:10.1002/chem.201902975
https://doi.org/10.1002/chem.201902975

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Energy Flow in the Nano Range
18.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>