Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at HKUST achieved novel nanobowl optical concentrator for organic solar cell

07.01.2015

Geometrical light trapping is a simple and promising strategy to largely improve the optical absorption and efficiency of solar cells. Nonetheless, implementation of geometrical light trapping in organic photovoltaic (OPV) is challenging due to the fact that uniform organic active layer can rarely be achieved on textured substrate.

Professor Zhiyong Fan and his group from Hong Kong University of Science and Technology (HKUST) reported novel nanobowl optical concentrator fabricated on low-cost aluminum foil and aiming at tackling this problem. They have successfully fabricated OPV devices based on such optical concentrator and demonstrated over 28 % enhancement in power conversion efficiency over the devices without nanobowl. This work was published in SCIENCE BULLETIN. 2015 Vol. 1.


This is an electron microscopic image and optical simulation of nanobowl optical concentrator.

Credit: ©Science China Press

Solar energy is one of the most promising renewable energy resources and represents a clean and ultimate replacement for fossil fuels in the future. Over the past decades, enormous efforts have been invested in developing efficient and cost effective photovoltaic devices which are competitive to the fossil fuel. Organic photovoltaic (OPV) has been regarded as one of the promising candidates for large-scale, low-cost and efficient solar energy harvesting. Typical OPV devices are fabricated on glass substrate and using indium-doped tin oxide as electrode.

However, such substrate is not flexible and the relatively high resistance of ITO electrode will compromises the OPV device performance. Comparatively, an aluminum foil substrate has the advantages of excellent conductivity, flexibility, cost-effectiveness and roll-to-roll processibility. Meanwhile, light trapping by nano-textured substrate is an appealing strategy to improve solar cell efficiency. Nonetheless, such application for OPV has yet been successfully demonstrated up to now. This is partly due to the more stringent requirement on active layer thickness uniformity for OPV devices and such uniformity is hard to be guaranteed on nano-texture with the existing coating techniques.

The novel nanobowl optical concentrator developed by Professor Zhiyong Fan can largely enhance the optical absorption in the active layer of organic solar cell and optical simulation revealed that such improvement was contributed by the superior photon capturing capability of the nanobowl. In addition, they have investigated the effect of geometry of nanobowl on the solar cell performance and three types of nanobowl with pitch of 1000 nm, 1200 nm and 1500 nm were studied.

Solar cells based on nanobowl with pitch of 1000 nm exhibited the best photon absorption in photoactive layer leading to the highest short-circuit current density of ~9.41 mA cm-2 among all nanobowl substrates. With open-circuit voltage of 0.573 V and fill factor of 57.9 %, this nanobowl solar cell achieved a solar energy conversion efficiency of 3.12 %, which is 28 % improvement over the control device without nanobowl. This work not only revealed the in-depth understanding of light trapping by nanobowl optical concentrator, but also demonstrated the feasibility of implementing geometrical light trapping in low-cost, solution processible OPV.

The development of the novel nanobowl optical concentrator and its application on OPV were a collaborative effort involving Professors in Department of Chemistry of HKUST including Professor Shihe Yang and Professor He (Henry) Yan, who are working on cutting-edge researches about organic photovoltaics. The research project was supported by General Research Funds from Hong Kong Research Grants Council and Hong Kong Innovation Technology Commission.

See the article: Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics. Science Bulletin. DOI:10.1007/s11434-014-0693-8

http://www.scibull.com:8080/EN/abstract/abstract509578.shtml http://link.springer.com/article/10.1007%2Fs11434-014-0693-8

Zhiyong Fan | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>