Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Closes in On Ethanol Breakthrough that Reduces Need to Use Corn to Make Ethanol

22.08.2008
A yeast geneticist on the campus of Indiana University-Purdue University Indianapolis (IUPUI) is close to developing mutant yeast for ethanol production that would reduce or eliminate the need to use corn to make the alternative fuel.

The production of biofuels from basic plant material, rather than corn and other crops, would address concerns that making corn-based ethanol is pushing up food costs, said Mark Goebl, a professor of Biochemistry and Molecular Biology in the IU School of Medicine

Goebl’s work is part of the Richard G. Lugar Center for Renewable Energy, which was established to address the societal needs for clean, affordable and renewable energy sources, improve the nation’s energy security, and reduce global warming. Its primary mission is to promote research excellence in the area of renewable energy through collaborative efforts among faculty in the disciplines of engineering, chemistry, physics, biology, and environmental affairs. It will promote renewable energy applications through teaching, learning, civic engagement, and synergistic partnerships with industry, government labs and local communities.

Areas of current research include renewable energy through fuel cell technology, renewable hydrogen (solar, reformers), environmentally benign usage of renewable fuels , bio-fuel production and applications, and advanced battery technology.

Goebl said the crux of the problem of using basic plant material to make ethanol involves how yeast decide what they will eat.

When corn is used to make ethanol, yeast couldn’t be happier. Corn kernels are ground to produce starch and the starch is broken down into glucose. Yeast is then used to ferment the glucose into ethanol.

“Although yeast can derive energy from a lot of different carbon sources, such as fatty acids and different kinds of sugars, yeast really, really like glucose, the sugar found in honey,” Goebl said. “That’s what they will use if it’s there, even if it’s there only in trace amounts.”

And that’s where the sticking point occurs. During the fermentation process, there is always a trickle of glucose coming into the system.

Unlike corn kernels, one-third of basic plant material consists of compounds that produce pine resins for which there are useful purposes. One- third is cellulose, which can be converted to glucose and used to make ethanol. But one-third is another kind of sugar, xylose, which yeast turn away from, like a child who is a picky eater pushes a vegetable to the side of his plate.

Goebl has developed strains of yeast that will utilize the xylose, even if glucose is around.

“How do you get yeast to give up their habit of using only glucose, no matter what else is around?” Goebl asked. The answer, he continued, is genetics.

“Yeast essentially care about glucose because they are genetically programmed that way, not because there is any physiological reason they have to care about glucose,” he said. “We can genetically change that program. We are using genetics to modify yeast strains so that they will use other sugars just as well as glucose.”

Producing mutant yeast strains that will eat xylose just as well as glucose means nearly doubling the amount of ethanol you get from the same volume of basic plant material. “You get a lot more ethanol for the same amount of work.”

Another advantage of reducing or eliminating the need to use corn to make ethanol is that the rich farmland needed to grow corn isn’t needed to grow basic plant material. “Essentially, you can go out and mow your lawn.”

Rich Schneider | Newswise Science News
Further information:
http://www.iupui.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>