Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research maps the city's heat

14.05.2012
Steel – the traditional industry for which the UK city of Sheffield is so well known – could help provide a green alternative for heating the city's homes and businesses, alongside other renewable energy sources.

Experts from the University of Sheffield's Faculty of Engineering believe that the many steel plants located just outside the city centre could be connected to Sheffield's existing district heating network to provide an extra 20 MW of thermal energy, enough to heat around 2,000 homes.

"It actually costs the steel plants to reduce the temperature of the flue gas and to cool the water used during steel manufacture. Recovering this heat and transferring it to the district heating network reduces the cost of heat production, improves energy efficiency and is beneficial to the environment, making a 'win, win' situation for the steelworks and the city," says Professor Jim Swithenbank, who played a key role in developing the first phase of Sheffield's district heating system in late 1970s.

Sheffield already has the largest district heating system in the UK, powered through an energy recovery facility that burns the city's non-recyclable waste. Each year this generates 21 MW of electricity, enough to power 22,000 homes, and 60 MW of thermal energy in the form of super-heated steam, which is pumped around the city in a 44 km network of underground pipes. This provides space heating and hot water to over 140 public buildings and 3,000 homes across the city, reducing the city's CO2 emissions by 21,000 tonnes a year.

Engineers from the University's SUWIC Research Centre (Department of Chemical and Biological Engineering) have mapped out a possible expansion of the network which could reduce Sheffield's annual CO2 emissions by a further 80,000 tonnes.

In the study funded by the UK Engineering and Physical Sciences Research Council (EPSRC), the researchers used digital mapping software (GIS) to identify areas of high energy demand against potential new energy sources, such as the steel works and a new biomass plant currently under construction on the site of a former coal-fired power station.

This enabled them to assess where expansion of the network would be most advantageous. Their findings are published today (May 14) in the Journal of Energy Conversion and Management.

District heating, particularly using waste as a fuel, can provide cost-effective and low-carbon energy to local populations, without exposure to the fluctuations of energy markets.

Such systems are currently rare in the UK, although widely used throughout the rest of the world. Many involve partnerships with local industry, where waste heat from process industries supplies the local district heating network; one such system in Finland uses waste heat from a steel producer.

While some UK cities are now using their waste incineration plants to generate electricity, few connect such facilities to a district heating system to realise the full economic and environmental benefits.

"The analysis we've carried out in Sheffield could be mirrored across other UK cities," says Professor Vida Sharifi, who led the research. "Heating buildings is responsible for half the energy use in the UK. The government have estimated that if district heating were used across the UK in areas with high heat demand, it could supply around 5.5 million properties and contribute a fifth of the UK's heating needs.

"District heating is a good way to decarbonise the energy supply to meet national and international legislation on emission limits. And, importantly for local people, this form of energy can also be used to provide low-cost heating, especially to those in areas of fuel poverty."

Abigail Chard | EurekAlert!
Further information:
http://www.campuspr.co.uk

Further reports about: CO2 CO2 emission energy source thermal energy waste heat

More articles from Power and Electrical Engineering:

nachricht Lights, camera, action... the super-fast world of droplet dynamics
26.02.2020 | University of Leeds

nachricht Turbomachine expander offers efficient, safe strategy for heating, cooling
25.02.2020 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>