Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne's nuclear energy research moves toward greater reliance on computer simulation

29.11.2007
The U.S. Department of Energy’s Argonne National Laboratory is taking its nuclear energy research into new territory – virtual territory that is.

With the recent arrival of the new IBM Blue Gene/P and the lab’s development of advanced computer models, Argonne has a critical role in making it possible to burn repeatedly nuclear fuel that now sits as waste, thus closing the nuclear fuel cycle and reducing the risk of nuclear proliferation.

The move toward greater reliance on computer simulation and modeling to conduct nuclear energy research is a progressive trend seen in other areas of scientific research supported by DOE.

"High-speed supercomputers are increasingly tackling difficult problems that could once be addressed only in a laboratory setting," Argonne Director Robert Rosner said.

"The traditional approach to developing nuclear energy technologies is to do a bunch of experiments to demonstrate a process or reaction," said Mark Peters, deputy to the assistant laboratory director of applied science and technology and Argonne’s program manager for the Global Nuclear Energy Partnership. "What Argonne is doing is creating a set of integrated models that demonstrate and validate new technologies, using a smaller number of experiments."

Moreover, "advanced simulation can greatly reduce facilities' costs by allowing us to better identify and target the physical experiments which underlie their design," said Andrew Siegel, a computational scientist at Argonne and the lab’s nuclear simulation project leader.

Siegel and a team of Argonne computational scientists are in the throes of refining computer codes that will eventually be used to conduct the underlying scientific research that will support the development of next generation nuclear systems such as advanced fast reactors, Siegel said. "We will use advanced simulation to improve and optimize the design and safety of advanced fast reactors," he said.

The Sodium Fast Reactor (SFR) design, which was born at Argonne, is a key part of President Bush’s Global Nuclear Energy Partnership, a strategy that will significantly reduce the radioactivity and volume of waste requiring disposal and reduce the risk of nuclear proliferation. SFR designs are safe, capable of reducing the volume and toxicity of nuclear waste, and economically competitive with other electricity sources.

Using internal lab funding initially and GNEP funding more recently, Argonne computational scientists are designing a modern suite of tools called SHARP – Simulation-based High-efficiency Reactor Prototyping, Siegel said. The SHARP toolkit is a collection of individual software components that digitally mimic the physical processes that occur in a nuclear reactor core, including neutron transport, thermal hydraulics and fuel and structure behavior, Siegel explained.

SHARP has been developed to fully leverage Argonne’s new Advanced Leadership Computing Facility, which is made up of the Blue Gene/P, an IBM computer that is designed to operate at a sustained rate of 1-petaflop per second and capable of reaching speeds of 3 petaflops.

SHARP will build upon and may eventually replace existing computer codes that are used to conduct safety evaluations of today’s portfolio of aging nuclear power reactors. Furthermore, those older codes, while adequate for evaluating the scoping designs of next generation reactors, are not as well-equipped to validate the performance of new reactor concepts now under design, Siegel said. A simulation tool like SHARP, which is being written specifically to test SFR design concepts, have the potential to shave off millions of dollars in reactor design development and construction, he said.

The kind of modeling and simulation work taking place at Argonne in support of the development of advanced nuclear energy systems is not by accident. "We see Argonne as the one place that can pull off the creation of advanced simulation tools that will be able to successfully replace some types of experiments," Siegel said.

The reason: Argonne has the biggest concentration of scientists involved in fast reactor design and fuel reprocessing technologies – expertise that is essential to refining SFR design concepts. "This is the center of brain power for nuclear energy research," Siegel said. Moreover, Argonne’s nuclear engineers and chemical engineers have already been collaborating with the lab’s computer scientists to develop precise computer simulations of the process of physical changes that would occur in an SFR, as well as other important aspects of the nuclear fuel cycle (e.g., separations and processing technologies).

Angela Hardin | EurekAlert!
Further information:
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>