Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen, the energy vector for the plane of tomorrow

08.11.2007
The scientific community is progressively experiencing a greater interest in environmentally friendly energy generation technologies, and their suitable applications, such is the case of hydrogen fuel cells applied to aeronautics.

This contamination free technology has taken a crucial role in the development of modern aeronautics and the present objective is the realization of fully electrical planes. Hydrogen fuel cells are currently being tested as propulsion system in Unmanned Aerial Vehicles by companies like Boeing, where all the advantages it could offer are being taken into consideration, from its efficiency to the possibility to recycle the water generated as by-product, maybe for use in the plane’s toilets.

The application of this technology as propulsion for large commercial planes is far fetched, since at present time, fuel cells do not provide enough energy, but this technology could be implemented as an auxiliary power unit (APUs) that could start the engines in the plane, power the air conditioning, the lights, cabin pressure… etc.

The European project “power optimised aircraft” aims to further develop fuel cell technology applied to high efficiency APUs. This project involves several European private companies and different public organisms from different countries. Spain is represented by the Instituto Nacional de Técnica Aeroespacial (INTA), CESA SA. and SENER SA.

There are different approaches towards how the hydrogen needed to fuel the cells is to be obtained. To this date, most experimental designs include high pressure storage tanks for the hydrogen, but this presents serious risks. It would call for changes to the plane designs and refuelling logistics, all added to the fact that the light density of hydrogen implies a fast consumption rate that would only allow for short flights. All these inconveniences have favoured the study of other sources of hydrogen, such as its on board production from kerosene already present in the plane as engine fuel, therefore eliminating the need for any major modification.

Two different procedures to reform the kerosene into hydrogen are being studied; one involving preparing the kerosene by a previous process to obtain richer hydrogen flow. And the second option would be a fuel cell capable of transforming the hydrocarbon directly into electric energy.

This new system would be lighter and more compact, reducing the weight of the equipment, but the technology to achieve this is currently at the evaluation phase.

Aware of the repercussion of this new technology in the aerospace sector, the Círculo de Innovación de Materiales, Tecnología Aerospacial y Nanotecnología (CIMTAN) (Innovation Circle in Materials, Aerospace Technology and Nanotechnology) is producing a report on the subject to be released at the end of the year. Its aim is to offer an overview of the technology and set the trends and roadmap that the scientific community is following.

Oficina Transferencia Resultados | alfa
Further information:
http://www.inta.es

More articles from Power and Electrical Engineering:

nachricht New combustion process - Record efficiency for a gas engine
21.06.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

Non-invasive view into the heart

24.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>