Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers detect low-energy neutrinos, probe energy production in sun's center

28.08.2007
In collaboration with scientists from institutions in the United States and Europe, researchers from Virginia Tech have observed tell-tale signals of neutrinos emitted by thermonuclear fusion reactions that power the sun deep in its interior.

At approximately 15 million degrees, protons — the nuclei of hydrogen atoms — and light elements can fuse to form new nuclei. Several such steps eventually convert the hydrogen in the sun into helium, releasing about 25 million times more energy per gram than TNT, oil, or coal.

“While the neutrinos, which are uncharged elementary particles, only take about eight minutes to reach the earth, the thermal energy produced at the center of the sun only appears as sunlight some 50 thousand years later, after diffusing to the sun’s surface,” said Bruce Vogelaar professor of physics and leader of Virginia Tech’s research team for this project.

“The only way to prove the validity of this model of solar energy generation is to observe these neutrinos which easily travel right through the sun because of their weak interaction with matter,” Vogelaar said. “Of special interest are those neutrinos from the decay of 7Be, a critical step in the energy chain of the sun.”

It is these neutrinos that the Virginia Tech team and their colleagues have observed directly for the first time in the Borexino detector, located under the Gran Sasso peak in the Apennine mountain range about 100 miles east of Rome. Borexino is a massive detector that contains some 350,000 gallons of organic liquid. Its central region detects neutrinos by seeing the light given off when a neutrino collides with an electron, using some 2,200 photosensors arrayed around the detector.

“The sun emits copious amounts of neutrinos in a wide range of energies,” Vogelaar said. “About 10 billion pass through your thumbnail each second.”

In the last decade, the much rarer high-energy fraction (one part in ten thousand) has been seen in many experiments, he said. The vast majority of the flux, however, is at much lower energies and had not been directly observed until now. This is because previous detector technologies were unable to discriminate low-energy neutrino signals from formidable backgrounds due to radioactivities normally present in the environment. These include the detector itself and cosmic rays. To avoid the latter, the detector was shielded by placing it deep underground at Gran Sasso. The Borexino Collaboration has developed and employed a new technology that virtually eliminated even trace contaminations, allowing successful measurement of the low-energy solar neutrinos.

The required purities are unprecedented — several million times lower than levels normally achievable, even with the development of ultra-clean technologies for the semiconductor industry. Another major problem with detecting low-energy neutrinos was the inescapable carbon in the detector’s organic liquid, which normally contains a million times more radioactive 14C than tolerable for Borexino. 14C is normally used in radiocarbon dating studies.

Raju Raghavan, professor of physics at Virginia Tech and formerly with Bell Laboratories, made the first breakthrough in methods for reducing radioactive contamination sufficiently as well as discovering how to avoid the radiocarbon. With colleagues from University of Pavia, Italy, he invented new methods of purification and material characterization that explicitly showed for the first time that the solubility of heavy metals, such as radioactive Uranium and Thorium, in non-polar liquids were a million times lower than thought earlier, and thus suitable for Borexino. Since radiocarbon cannot be chemically purified from normal carbon, Raghavan side-stepped the problem by postulating that petrochemicals derived organic liquids ought to contain much less radiocarbon than normal, due to their residence deep in the earth for geological times. Raghavan and colleagues from the University of Toronto developed a method to show this was the case, and that indeed, the purities reached Borexino levels, which are parts per million billion.

“These results on the laboratory scale showed the potential for low-energy neutrino spectroscopy in Borexino and paved the way to large scale investments for the experiment,” Raghavan said. “These new techniques have also impacted commercial technology needed today,” For example, he solved the sodium contamination problem in photolithographic chemistry in the fabrication of chips in the microelectronic industry using these techniques.

Showing that these results were valid at the ton, and then kiloton, scales was accomplished over the next 10 years by the Borexino collaboration, including exhaustive field tests using a five-ton prototype detector constructed in Gran Sasso.

The Borexino collaboration consists of more than 100 scientists, post-doctoral fellows, and students from Tech and Princeton University in the U.S., and groups from Italy, France, Germany, Russia, and Poland. In addition to Vogelaar and Raghavan, other members of the Virignia Tech team were Henning Back (currently at NCSU), Christian Grieb, Steven Hardy, Matthew Joyce, Derek Rountree, and. Szymon Manecki, along with several undergraduates. The collaboration is led by Gianpaolo Bellini of the University of Milan, Italy. Essential support for the 20-year effort was provided by the Laboratori Nazionali del Gran Sasso, the INFN (Italy), the National Science Foundation, and other funding agencies in Europe and Russia.

“The scientific and technological achievement of Borexino is a testament to the value of international collaboration and the ingenuity and tenacity of the Borexino collaboration over 20 years to achieve the present success.” Vogelaar said. “We expect that information on the 7Be solar neutrinos will clarify the sun’s energy cycle in great detail and throw light on the nature of the neutrino itself”

Catherine Doss | EurekAlert!
Further information:
http://borex.lngs.infn.it
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>