Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA engineers set new world record in generation of high-frequency submillimeter waves

17.04.2007
Discovery paves the way for a new generation of sensing and imaging devices

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have achieved a new world record in high-frequency submillimeter waves. The record-setting 324-gigahertz frequency was accomplished using a voltage-controlled oscillator in a 90-nanometer complementary metal-oxide semiconductor (CMOS) integrated circuit, a technology used in chips such as microprocessors.

The signal generator, which produces frequencies nearly 70 percent faster than other CMOS oscillators, paves the way for a new generation of submillimeter devices that could someday be used in high-resolution sensors on spacecraft, and here on Earth in a new class of highly integrated and lightweight imagers that could literally cut through fog and see through clothing fabrics. And because frequency ultimately means bandwidth, "the higher frequency increases the available bandwidth," said M.C. Frank Chang, UCLA professor of electrical engineering, who leads the research team. That greater bandwidth translates into faster communication speeds.

With traditional 90-nanometer CMOS circuit approaches, it is virtually impossible to generate usable submillimeter signals with a frequency higher than about 190 GHz. That's because conventional oscillator circuits are nonlinear systems in which increases in frequency are accompanied by a corresponding loss in gain or efficiency and an increase in noise, making them unsuitable for practical applications.

Chang, who also is director of UCLA Engineering's High Speed Electronics Laboratory, and researchers Daquan Huang and Tim LaRocca skirted the issues using a technological sleight of hand — and some unique analog signal processing.

The researchers first generated a voltage-controlled CMOS oscillator, or CMOS VCO, operating at a fundamental frequency of 81GHz with phase-shifted outputs at 0, 90, 180 and 270 degrees, respectively. By linearly superimposing these four (or quadruple) rectified phase-shifted outputs in real time, they ultimately generated a waveform with a resultant oscillation frequency that is four times the fundamental frequency, or 324 GHz. This new frequency generation method, in principle, has high DC-to-RF conversion efficiency (up to 8 percent) and has low phase noise, comparable to that of the constituent fundamental oscillation signal.

"When you go back to the fundamental math and physics, you find that you can do this and not pay much of a price. That's the beauty of it," Chang said. "If you use digital signal processing, you can synthesize this and synthesize that, but you pay the price for it with a loss of energy."

The measurement test of the 324-GHz signal was conducted by engineers Lorene Samoska and Andy Fung of NASA's Jet Propulsion Laboratory in Pasadena, which has facilities to test these high-frequency ranges. JPL and NASA are particularly interested in submillimeter technology because submillimeter-range wavelengths are ideal for deep-space remote sensing — there is no atmosphere in space to dampen the signals. Higher frequency signals, in turn, produce higher resolution images. "You can see better," Chang said.

Chang and Huang, in collaboration with JPL colleagues, have jointly applied for government grants to use the technology to design lightweight, low-power and highly integrated signal generators that can produce signals at frequencies up to 600 GHz. Applications for these high-frequency VCOs include imaging systems for both commercial and future space missions.

Creating 600-GHz signals requires a relatively straightforward modification of the circuit — either by increasing the fundamental frequency of the VCO or increasing the number of superimposed oscillator outputs (using eight or 16 instead of four).

"Because the algorithm has been validated, we know that we can achieve these frequencies," Chang says.

For example, if quadruple 85-GHz VCO outputs are used, the resulting output frequency would be 340 GHz. That frequency is something of a Holy Grail to the commercial aerospace industry and the military because it represents a "window" in our atmosphere where there is very little attenuation of submillimeter signals. (Essentially, they are invisible to the air.)

Normally, millimeter-range waves excite the atomic and molecular bonds in water, oxygen, carbon dioxide and other molecules in the atmosphere, and the gases absorb the waves. Signals at 340 GHz, however, "sneak through," Chang said, and can propagate long distances.

"One result is that waves of these frequencies can see through the fog, which is of interest to commercial aerospace companies," he said. Chang estimates that he and his colleagues will be able to produce the 340-GHz signals within the next six months

Another application of the high-frequency CMOS VCOs of interest to the United States military is in submillimeter wavelength imaging. "Because the wavelength is submillimeter, you may image through people's clothing," Chang said. "For example, it would be possible to remotely view if some civilian walking up to you has plastic explosives hidden under his coat."

CMOS technology makes future submillimeter-wave devices easily integrated with advanced microprocessors on-chip and can be very lightweight, so these sensors would be portable. "Foot soldiers could backpack them into the battle zone," Chang said.

Melissa Abraham | EurekAlert!
Further information:
http://www.engineer.ucla.edu

More articles from Power and Electrical Engineering:

nachricht How electric heating could save CO2 emissions
17.12.2018 | Technische Universität München

nachricht Data use draining your battery? Tiny device to speed up memory while also saving power
14.12.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>