Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft researchers predict 'nanobattery' performance

03.04.2007
Researchers at Delft University of Technology can predict how nanostructuring – the extreme reduction of structure – will affect the performance of Li-ion batteries.

The nanostructuring of battery materials is likely to be common practice in the future, but it is not always performance-enhancing. The research findings have recently been published in the Journal of the American Chemical Society.

A Li-ion battery is currently the smallest and lightest way to store as much rechargeable electrical energy as possible. However, the batteries are slow to charge and discharge, and this restricts their suitability for applications such as hybrid and electric vehicles. This sluggish performance is largely determined by the relatively long distance the lithium-ions have to travel through the electrode material in the battery. The speed at which the ions make their way through the electrode material is also slow compared to that in electrolyte (the fluid between the electrode material). The current strategy is therefore to nanostructure the electrode particles; that is to say, to make them very small (measurable in nanometres), and by doing so to shorten the existing route within the electrode material.

Yet the battery performance of materials nanostructured in this way has failed to meet expectations. To a great extent, these discrepancies were not understood. By using neutron-diffraction research technology, researchers at Delft University of Technology's Reactor Institute Delft (RID) have discovered that when the electrode particles are scaled down, the properties of the material structure change significantly. The phase balance that is generally present in this type of material changes and even disappears completely if the electrode sections become small enough.

Based on these findings, the researchers (Marnix Wagemaker, Wouter Borghols and Fokko Mulder) can predict how the nanostructures will affect the performance of the Li-ion batteries. They have concluded that the nanostructures of the electrode materials in Li-ion batteries is largely dependent on the material and the exact particle size. At a more general level, their findings are important for applications in which small ions diffuse into nanocrystals, such as hydrogen storage and the formation of alloys.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>