Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible battery power

20.03.2007
A paper-like, polymer based rechargeable battery has been made by Japanese scientists.

The news is reported in the latest edition of The Royal Society of Chemistry journal Chemical Communications.

With recent advances in the technology of portable electronic devices, there is a demand for flexible batteries to power them.

Drs Hiroyuki Nishide, Hiroaki Konishi and Takeo Suga at Waseda University have designed the battery – which consists of a redox-active organic polymer film around 200 nanometres thick. Nitroxide radical groups are attached, which act as charge carriers.

The battery has a high charge/discharge capacity because of its high radical density.

Dr Nishide said: “This is just one of many advantages the ‘organic radical’ battery has over other organic based materials which are limited by the amount of doping.

“The power rate performance is strikingly high – it only takes one minute to fully charge the battery. And it has a long cycle life, often exceeding 1,000 cycles.”

The team made the thin polymer film by a solution-processable method – a soluble polymer with the radical groups attached is “spin-coated” onto a surface. After UV irradiation, the polymer then becomes crosslinked with the help of a bisazide crosslinking agent.

A drawback of some organic radical polymers is the fact they are soluble in the electrolyte solution which results in self-discharging of the battery – but the polymer must be soluble so it can be spin-coated.

However, the photocrosslinking method used by the Japanese team overcomes the problem and makes the polymer mechanically tough.

Dr Nishide said: “This has been a challenging step, since most crosslinking reactions are sensitive to the nitroxide radical.”

Professor Peter Skabara, an expert in electroactive materials at the University of Strathclyde , praised the high stability and fabrication strategy of the polymer-based battery.

He said: “The plastic battery plays a part in ensuring that organic device technologies can function in thin film and flexible form as a complete package.”

Dr Nishide envisages that the organic radical battery could be used in pocket-sized integrated circuit cards, used for memory storage and microprocessing, within three years.

He said: "In the future, these batteries may be used in applications that require high-power capability rather than high energy density, such as a battery in electronic devices and motor drive assistance in electric vehicles."

Tony Kirby | alfa
Further information:
http://www.rsc.org

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>