Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analog circuits could impact consumer electronics

19.02.2007
Advances in digital electronic circuits have prompted the boost in functions and ever- smaller size of such popular consumer goods as digital cameras, MP3 players and digital televisions.

But the same cannot be said of the older analog circuits in the same devices, which process natural sights and sounds in the real world. Because analog circuits haven't enjoyed a similar rate of progress, they are draining power and causing other bottlenecks in improved consumer electronic devices.

Now MIT engineers have devised new analog circuits they hope will change that. Their work was discussed this week at the International Solid State Circuits Conference (ISSCC) in San Francisco Feb. 11-15.

"During the past several decades engineers have focused on allowing signals to be processed and stored in digital forms," said Hae-Seung Lee, a professor in MIT's Microsystems Technology Laboratories (MTL) and the Department of Electrical Engineering and Computer Science (EECS). "But most real-world signals are analog signals, so analog circuits are an essential part of most electronic systems."

Analog circuits are used to amplify, process and filter analog signals and convert them to digital signals, or vice versa, so the real world and electronic devices can talk to each other. Analog signals are continuous and they vary in size, whereas digital signals have specific or discrete values.

The reason the two different types of electronic signal circuits did not advance at the same pace, Lee said, is because they are very different. Digital circuits can be decreased in size more easily, for example, by using the popular complementary metal oxide semiconductor (CMOS) technology. And much of the design and performance enhancement can actually be done by computer software rather than by a human. That's not the case with analog circuits, which Lee said require clever designs by humans to be improved because of their variable nature.

"There is a lot of room for innovation in the human design," he said. "The importance of analog circuits is growing in light of the digital improvements, so engineers can make a difference in products by working on them." Currently, analog circuits are rather expensive and they consume a disproportionate amount of power compared with digital circuits.

Another blow to analog circuits is that the advancements in fabrication (manufacturing) technology to improve digital circuits have had a negative impact on them. Traditionally, many conventional analog circuits have relied upon devices known as operational amplifiers. Two negative side effects that advanced fabrication technologies have had on operational amplifier-based analog circuits are that when used in consumer or other devices, they have reduced the range of the analog signal and decreased the device's gain. To compensate for these shortcomings, analog circuits must consume much more power, thus draining precious energy from batteries.

In addition, it still is not clear whether traditional operational amplifier-based circuits can be applied to emerging technologies such as carbon nanotube/nanowire devices and molecular devices.

Lee's research group, in collaboration with Professor Charles Sodini's group in MIT's MTL and EECS, recently demonstrated a new class of analog circuits that Lee said eliminates operational amplifiers while maintaining virtually all benefits of operational amplifier-based circuits. These new comparator-based switched capacitor (CBSC) circuits handle voltage differently than conventional analog ones, resulting in greater power efficiency.

"The new work coming out of MIT offers the intriguing possibility of eliminating operational amplifiers by proposing an architecture that relies on circuit blocks that are much more readily implemented on supply voltages of 1 volt or less," said Dave Robertson, high-speed converter product line director at Analog Devices Inc. in Norwood, Mass., and data converter subcommittee chair at ISSCC.

Lee said CBSC may enable high-performance analog circuits in emerging technologies because it would be easier to implement comparators than operational amplifiers in these technologies.

The first prototype MIT CBSC was demonstrated in an analog-to-digital converter and presented at 2006 ISSCC. The second prototype, an 8-bit, 200 MHz analog-to-digital converter, was presented at the conference this week.

Other key members of the research team are EECS graduate students John Fiorenza and Todd Sepke, who were involved in the work presented in 2006; EECS graduate student Lane Brooks, who worked on the current prototype; and Peter Holloway of National Semiconductor Corp.

The research leading to the 2006 ISSCC paper was funded by Microelectronics Advanced Research Corp. The research leading to the paper presented this week was funded by the MIT Center for Integrated Circuits and Systems and a National Defense Science and Engineering Graduate Fellowship.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>