Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan and EURATOM partnership for joint implementation of fusion energy research

12.02.2007
On February 5, 2007 in Tokyo, the Minister for Foreign Affairs of Japan and the Ambassador of the Delegation of the European Commission to Japan signed the Agreement between the Government of Japan and the European Atomic Energy Community for the Joint Implementation of the Broader Approach Activities in the Field of Fusion Energy Research in Tokyo.

This so-called "Broader Approach" materialises the privileged partnership of Japan and EURATOM in the field of fusion energy research. Japan and EURATOM will work together on three individual projects under this Agreement to accelerate the realisation of fusion energy as a clean and sustainable energy source for the 21st century. The Agreement will have a duration of ten years.

The signature of this Agreement marks another milestone in the strong cooperation between Japan and EURATOM in the field of fusion energy research. This co-operation aims at complementing the ITER Project, the international project on fusion energy at an early realisation of fusion energy for peaceful purposes, by carrying out R&D and developing some advanced technologies for the future demonstration power reactor (DEMO).

Welcoming the signature of the Agreement, the Director General Nominee of the ITER Organization, Mr Kaname Ikeda said: “ITER and the Broader Approach, together with the current level of fusion research being undertaken world-wide, represent a big step towards the realisation of fusion power”.

The three large research projects will be undertaken in Japan under the framework of this Agreement. These projects are closely related to the implementation of the ITER Project and will be on a time frame compatible with the ITER construction phase. The first two projects will be carried out at Rokkasho, Aomori and the third project will be carried out at Naka, Ibaraki. The participation in each research project will be open to the other ITER Parties.

1. Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA).

The future realisation of fusion energy will require materials which have endurance and show low radioactivity against the exposure to the harsh thermal and irradiation conditions inside a fusion reactor. IFMIF will allow testing and qualification of advanced materials in the environment conditions of a future fusion power reactor. The Engineering Validation and Design Activities aim at producing a detailed, complete and fully integrated engineering design of IFMIF.

2. International Fusion Energy Research Centre (IFERC).

IFERC consists of activities on DEMO design R&D, Computational Simulation and ITER Remote Experimentation towards the realisation of DEMO.

3. Satellite Tokamak Programme

The JT-60 tokamak will be upgraded to an advanced superconducting tokamak JT-60 SA, and be exploited under the framework of this Agreement as a "satellite" facility to ITER. The Satellite Tokamak Programme is expected to develop operating scenarios and address key physics issues for an efficient start up of ITER experimentation and for research towards DEMO.

Jennifer Hay | alfa
Further information:
http://www.iter.org

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>