Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's fastest transistor approaches goal of terahertz device

13.12.2006
Scientists at the University of Illinois at Urbana-Champaign have again broken their own speed record for the world’s fastest transistor. With a frequency of 845 gigahertz, their latest device is approximately 300 gigahertz faster than transistors built by other research groups, and approaches the goal of a terahertz device.

Made from indium phosphide and indium gallium arsenide, "the new transistor utilizes a pseudomorphic grading of the base and collector regions," said Milton Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. "The compositional grading of these components enhances the electron velocity, hence, reduces both current density and charging time."

With their latest device, Feng and his research group have taken the transistor to a new range of high-speed operation, bringing the "Holy Grail" of a terahertz transistor finally within reach. Faster transistors translate into faster computers, more flexible and secure wireless communications systems, and more effective combat systems.

In addition to using pseudomorphic material construction, the researchers also refined their fabrication process to produce tinier transistor components. For example, the transistor’s base is only 12.5 nanometers thick (a nanometer is one billionth of a meter, or about 10,000 times smaller than the width of a human hair).

"By scaling the device vertically, we have reduced the distance electrons have to travel, resulting in an increase in transistor speed," said graduate student William Snodgrass, who will describe the new device at the International Electronics Device Meeting in San Francisco, Dec. 11-13. "Because the size of the collector has also been reduced laterally, the transistor can charge and discharge faster."

Operated at room temperature (25 degrees Celsius), the transistor speed is 765 gigahertz. Chilled to minus 55 degrees Celsius, the speed increases to 845 gigahertz.

Feng, Snodgrass and graduate student Walid Hafez (now at Intel Corp.) fabricated the high-speed device in the university’s Micro and Nanotechnology Laboratory.

In addition to further increasing the transistor speed, Feng wants to reduce the current density even more, which will reduce junction temperature and improve device reliability.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>