Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Car work for quantum mechanics

30.01.2002


A quantum afterburner extracts laser light from vehicle exhaust.


The last leap forward: Otto’s first four stroke engine of 1876.
Courtesy of Deutz Canada Inc.



The hot gases belching out of your car’s exhaust are not just useless waste. They are a laser waiting to happen, says physicist Marlan Scully1.

All you need to harness this potential, suggests Scully, of Texas A&M University in College Station, is a quantum afterburner. This hypothetical modification would use quantum mechanics to boost the engine’s efficiency by clawing back waste heat and turning it into useful energy - laser light.


Scully’s quantum soup-up would involve adding two new parts to an exhaust pipe: a laser and a maser (a kind of laser that emits microwaves rather than visible light). Both would produce radiation as soon as the number of high-energy molecules in the hot gas became abnormally large.

Normally, the higher the energy of excited molecules, the fewer of them there are. But in lasers, there is a population inversion - the gas becomes rich in excited molecules. Excited molecules then lose their energy by emitting it as light.

The quantum afterburner would rely on exhaust molecules being in three different states, like three rungs on an energy ladder. The maser would wring out energy from excited molecules on the second rung, sending them to the bottom rung. This depletion of the second rung would create a population inversion between it and the first rung that would produce laser emission.

In effect, says Scully, the maser would drain some heat from the exhaust gas so that the remainder could be extracted as useful laser emission. In a normal engine, all the heat in the exhaust is disregarded as useless.

Scully and others are now trying to build a real quantum engine, to probe the feasibility of his idea.

Work it

Engine efficiency is an old problem. The scientists who investigated it during the Industrial Revolution created the discipline called thermodynamics, which describes how heat flows from place to place.

In the early nineteenth century, the French engineer Nicholas Léonard Sadi Carnot calculated the maximum work available from an engine in which heating a gas through a cycle of expansion and contraction drives the motion of a piston.

Scully has taken a fresh look at the efficiency of such a cyclical process, not in a Carnot engine, but in an Otto engine. Devised in 1876 by Nikolaus Otto, this system forms the basis of today’s four-stroke internal-combustion engine.

In the Otto engine, a moving piston sucks fuel into a cylinder and then compresses it. The fuel is ignited and expands, pushing the piston outwards. The piston then expels the spent exhaust gases.

References

  1. Scully, M.O.Quantum afterburner: improving the efficiency of an ideal heat engine. Physical Review Letters, 88, 050602, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>