Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Car work for quantum mechanics

30.01.2002


A quantum afterburner extracts laser light from vehicle exhaust.


The last leap forward: Otto’s first four stroke engine of 1876.
Courtesy of Deutz Canada Inc.



The hot gases belching out of your car’s exhaust are not just useless waste. They are a laser waiting to happen, says physicist Marlan Scully1.

All you need to harness this potential, suggests Scully, of Texas A&M University in College Station, is a quantum afterburner. This hypothetical modification would use quantum mechanics to boost the engine’s efficiency by clawing back waste heat and turning it into useful energy - laser light.


Scully’s quantum soup-up would involve adding two new parts to an exhaust pipe: a laser and a maser (a kind of laser that emits microwaves rather than visible light). Both would produce radiation as soon as the number of high-energy molecules in the hot gas became abnormally large.

Normally, the higher the energy of excited molecules, the fewer of them there are. But in lasers, there is a population inversion - the gas becomes rich in excited molecules. Excited molecules then lose their energy by emitting it as light.

The quantum afterburner would rely on exhaust molecules being in three different states, like three rungs on an energy ladder. The maser would wring out energy from excited molecules on the second rung, sending them to the bottom rung. This depletion of the second rung would create a population inversion between it and the first rung that would produce laser emission.

In effect, says Scully, the maser would drain some heat from the exhaust gas so that the remainder could be extracted as useful laser emission. In a normal engine, all the heat in the exhaust is disregarded as useless.

Scully and others are now trying to build a real quantum engine, to probe the feasibility of his idea.

Work it

Engine efficiency is an old problem. The scientists who investigated it during the Industrial Revolution created the discipline called thermodynamics, which describes how heat flows from place to place.

In the early nineteenth century, the French engineer Nicholas Léonard Sadi Carnot calculated the maximum work available from an engine in which heating a gas through a cycle of expansion and contraction drives the motion of a piston.

Scully has taken a fresh look at the efficiency of such a cyclical process, not in a Carnot engine, but in an Otto engine. Devised in 1876 by Nikolaus Otto, this system forms the basis of today’s four-stroke internal-combustion engine.

In the Otto engine, a moving piston sucks fuel into a cylinder and then compresses it. The fuel is ignited and expands, pushing the piston outwards. The piston then expels the spent exhaust gases.

References

  1. Scully, M.O.Quantum afterburner: improving the efficiency of an ideal heat engine. Physical Review Letters, 88, 050602, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Energy Flow in the Nano Range
18.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>