Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Car work for quantum mechanics

30.01.2002


A quantum afterburner extracts laser light from vehicle exhaust.


The last leap forward: Otto’s first four stroke engine of 1876.
Courtesy of Deutz Canada Inc.



The hot gases belching out of your car’s exhaust are not just useless waste. They are a laser waiting to happen, says physicist Marlan Scully1.

All you need to harness this potential, suggests Scully, of Texas A&M University in College Station, is a quantum afterburner. This hypothetical modification would use quantum mechanics to boost the engine’s efficiency by clawing back waste heat and turning it into useful energy - laser light.


Scully’s quantum soup-up would involve adding two new parts to an exhaust pipe: a laser and a maser (a kind of laser that emits microwaves rather than visible light). Both would produce radiation as soon as the number of high-energy molecules in the hot gas became abnormally large.

Normally, the higher the energy of excited molecules, the fewer of them there are. But in lasers, there is a population inversion - the gas becomes rich in excited molecules. Excited molecules then lose their energy by emitting it as light.

The quantum afterburner would rely on exhaust molecules being in three different states, like three rungs on an energy ladder. The maser would wring out energy from excited molecules on the second rung, sending them to the bottom rung. This depletion of the second rung would create a population inversion between it and the first rung that would produce laser emission.

In effect, says Scully, the maser would drain some heat from the exhaust gas so that the remainder could be extracted as useful laser emission. In a normal engine, all the heat in the exhaust is disregarded as useless.

Scully and others are now trying to build a real quantum engine, to probe the feasibility of his idea.

Work it

Engine efficiency is an old problem. The scientists who investigated it during the Industrial Revolution created the discipline called thermodynamics, which describes how heat flows from place to place.

In the early nineteenth century, the French engineer Nicholas Léonard Sadi Carnot calculated the maximum work available from an engine in which heating a gas through a cycle of expansion and contraction drives the motion of a piston.

Scully has taken a fresh look at the efficiency of such a cyclical process, not in a Carnot engine, but in an Otto engine. Devised in 1876 by Nikolaus Otto, this system forms the basis of today’s four-stroke internal-combustion engine.

In the Otto engine, a moving piston sucks fuel into a cylinder and then compresses it. The fuel is ignited and expands, pushing the piston outwards. The piston then expels the spent exhaust gases.

References

  1. Scully, M.O.Quantum afterburner: improving the efficiency of an ideal heat engine. Physical Review Letters, 88, 050602, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>