Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar flares cause GPS failures, possibly devastating for jets and distress calls

28.09.2006
Strong solar flares cause Global Positioning System (GPS) receivers to fail, Cornell researchers have discovered.

Because solar flares -- larger-than-normal radiation "burps" by the sun -- are generally unpredictable, such failures could be devastating for "safety-of-life" GPS operations -- such as navigating passenger jets, stabilizing floating oil rigs and locating mobile phone distress calls.

"If you're driving to the beach using your car's navigation system, you'll be OK. If you're on a commercial airplane in zero visibility weather, maybe not," said Paul Kintner Jr., professor of electrical and computer engineering at Cornell and head of Cornell's GPS Laboratory.

Alessandro Cerruti, a graduate student working for Kintner, accidentally discovered the effect on Sept. 7, 2005, while operating a GPS receiver at Arecibo Observatory in Puerto Rico, one of six Cornell Scintillation Monitor (SCINTMON) receivers. Cerruti was investigating irregularities in the plasma of the Earth's ionosphere -- a phenomenon unrelated to solar flares -- when the flare occurred, causing the receiver's signal to drop significantly.

To be sure of the effect, Cerruti obtained data from other receivers operated by the Federal Aviation Administration (FAA) and the Brazilian Air Force. He found that all the receivers had suffered exactly the same degradation at the exact time of the flare regardless of the manufacturer. Furthermore, all receivers on the sunlit side of the Earth had been affected.

Cerruti will report on the findings Sept. 28 at the Institute of Navigation Meeting in Fort Worth, Texas, where he will receive the best student paper prize. The full results of the discovery will be published in a forthcoming issue of the journal Space Weather.

The flare consisted of two events about 40 minutes apart: The first lasted 70 seconds and caused a 40 percent signal drop; the second lasted 15 minutes and caused a 50 percent drop. But this flare was moderate and short-lived; in 2011 and 2012, during the next solar maximum, flares are expected to be 10 times as intense and last much longer, causing signal drops of over 90 percent for several hours.

"Soon the FAA will require that every plane have a GPS receiver transmitting its position to air traffic controllers on the ground," warned Cerruti. "But suppose one day you are on an aircraft and a solar radio burst occurs. There's an outage, and the GPS receiver cannot produce a location. ... It's a nightmare situation. But now that we know the burst's severity, we might be able to mitigate the problem."

The only solutions, suggested Kintner, are to equip receivers with weak signal-tracking algorithms or to increase the signal power from the satellites. Unfortunately, the former requires additional compromises to receiver design, and the latter requires a new satellite design that neither exists nor is planned.

"I think the best remedy is to be aware of the problem and operate GPS systems with the knowledge that they may fail during a solar flare," Kintner said.

The team was initially confused as to why the flare had caused the signal loss. Then Kintner recalled that solar flares are accompanied by solar radio bursts. Because the bursts occur over the same frequency bands at which GPS satellites transmit, receivers can become confused, leading to a loss of signal.

Had the solar flare occurred at night in Puerto Rico or had Cerruti been operating SCINTMON only at night, he would not have made the discovery.

"We normally do observations only in the tropics and only at night because that's where and when the most intense ionospheric irregularities occur," said Kintner. However, since no one had done it before, Cerruti was looking at "mid-latitudes" (between the tropics and the poles), where weaker irregularities can occur both night and day. As a result, SCINTMON detected the solar flare.

Other authors of the forthcoming paper include D.E. Gary and L.J. Lanzerotti of the New Jersey Institute of Technology, E.R. de Paula of the Instituto Nacional de Pesquisas Espaciais and Cornell research associate Hien Vo.

Thomas Oberst is a science writer intern at the Cornell Chronicle.

Thomas Oberst | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>