Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engine on a chip promises to best the battery

20.09.2006
MIT researchers are putting a tiny gas-turbine engine inside a silicon chip about the size of a quarter. The resulting device could run 10 times longer than a battery of the same weight can, powering laptops, cell phones, radios and other electronic devices.

It could also dramatically lighten the load for people who can't connect to a power grid, including soldiers who now must carry many pounds of batteries for a three-day mission -- all at a reasonable price.

The researchers say that in the long term, mass-production could bring the per-unit cost of power from microengines close to that for power from today's large gas-turbine power plants.

Making things tiny is all the rage. The field -- called microelectromechanical systems, or MEMS -- grew out of the computer industry's stunning success in developing and using micro technologies. "Forty years ago, a computer filled up a whole building," said Professor Alan Epstein of the Department of Aeronautics and Astronautics. "Now we all have microcomputers on our desks and inside our thermostats and our watches."

While others are making miniature devices ranging from biological sensors to chemical processors, Epstein and a team of 20 faculty, staff and students are looking to make power -- personal power. "Big gas-turbine engines can power a city, but a little one could 'power' a person," said Epstein, whose colleagues are spread among MIT's Gas Turbine Laboratory, Microsystems Technology Laboratories, and Laboratory for Electromagnetic and Electronic Systems.

How can one make a tiny fuel-burning engine? An engine needs a compressor, a combustion chamber, a spinning turbine and so on. Making millimeter-scale versions of those components from welded and riveted pieces of metal isn't feasible. So, like computer-chip makers, the MIT researchers turned to etched silicon wafers.

Their microengine is made of six silicon wafers, piled up like pancakes and bonded together. Each wafer is a single crystal with its atoms perfectly aligned, so it is extremely strong. To achieve the necessary components, the wafers are individually prepared using an advanced etching process to eat away selected material. When the wafers are piled up, the surfaces and the spaces in between produce the needed features and functions.

Making microengines one at a time would be prohibitively expensive, so the researchers again followed the lead of computer-chip makers. They make 60 to 100 components on a large wafer that they then (very carefully) cut apart into single units.

The MIT team has now used this process to make all the components needed for their engine, and each part works. Inside a tiny combustion chamber, fuel and air quickly mix and burn at the melting point of steel. Turbine blades, made of low-defect, high-strength microfabricated materials, spin at 20,000 revolutions per second -- 100 times faster than those in jet engines. A mini-generator produces 10 watts of power. A little compressor raises the pressure of air in preparation for combustion. And cooling (always a challenge in hot microdevices) appears manageable by sending the compression air around the outside of the combustor.

"So all the parts workS. We're now trying to get them all to work on the same day on the same lab bench," Epstein said. Ultimately, of course, hot gases from the combustion chamber need to turn the turbine blades, which must then power the generator, and so on. "That turns out to be a hard thing to do," he said. Their goal is to have it done by the end of this year.

Predicting how quickly they can move ahead is itself a bit of a challenge. If the bonding process is done well, each microengine is a monolithic piece of silicon, atomically perfect and inseparable. As a result, even a tiny mistake in a single component will necessitate starting from scratch. And if one component needs changing -- say, the compressor should be a micron smaller -- the microfabrication team will have to rethink the entire design process.

For all the difficulties, Epstein said the project is "an astonishing amount of fun" -- and MIT is the ideal place for it. "Within 300 feet of my office, I could find the world's experts on each of the technologies needed to make the complete system," he said.

In addition, the project provides an excellent opportunity for teaching. "No matter what your specialty is -- combustion or bearings or microfabrication -- it's equally hard," he said. "As an educational tool, it's enormously useful because the students realize that their success is dependent upon other people's success. They can't make their part easier by making somebody else's part harder, because then as a team we don't succeed."

This research was funded by the U.S. Army Research Laboratory.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>