Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic tongue has good taste

09.01.2002


Coffee producers could use the electronic tongue for quality control.
© PhotoDisc


Hand-held tasting device displays highly discriminating palate.

A new hand-held electronic tongue promises to give accurate and reliable taste measurements for companies currently relying on human tasters for their quality control of wine, tea, coffee, mineral water and other foods.

Human tasters are still irreplaceable for subtile products such as fine wines and whiskies. But their sense of taste saturates after a while, losing its discriminating edge. The device made by Antonio Riul of EMBRAPA Instrumentação Agropecuária in São Carlos, Brazil, and colleagues rivals human taste buds and never tires1.



The electronic tongue can sense low levels of impurities in water. It can discriminate between Cabernet Sauvignons of the same year from two different wineries, and between those from the same winery but different years. It can also spot molecules such as sugar and salt at concentrations too low for human detection.

Questionable taste

Humans have long been thought to detect four basic taste types: sweet, salty, sour and bitter. Very recently, a fifth candidate basic taste was identified: umami, the taste of monosodium glutamate, characteristic of protein-rich foods. Taste buds are believed to contain receptor molecules that trigger nerve signals when they encounter flavour-imparting molecules.

The details of this system are still not understood. Each taste sensation may correspond to a fingerprint signal induced by the differential activation of the various taste receptors. The electronic tongue works on this principle.

It contains four different chemical sensors. The sensors comprise very thin films of three polymers and a small molecule containing ruthenium ions. These materials are deposited onto gold electrodes hooked up to an electrical circuit.

In a solution of flavoursome substances such as sugar, salt quinine (bitter) and hydrochloric acid (sour), the thin sensing films absorb the dissolved substances. This alters the electrical behaviour (the capacitance) of the electrodes in a measurable way.

Each sensor responds differently to different tastes. A composite sensor that incorporates all four therefore produces an electronic fingerprint of the taste. The researchers combine these responses into a single data point on a graph. The position on the graph reflects the type of taste: sweet lies towards the top left, for example, sour towards the top right.

Different beverages have a characteristic location on the graph. Coffee is low down around the middle, for instance. Some tastes that might be expected to differ only slightly, such as distilled and mineral water, lie far apart on the graph and so can be clearly distinguished.

The electronic fingerprint allows the team to predict what a particular solution will taste like, says Martin Taylor of the University of Wales at Bangor, who collaborated with the Brazilian team. "It might fit in the salty or sweet domain, for example," he says. Taylor anticipates that the device will probably be able to discriminate the umami taste too, giving it a refined palate for sushi.

References

  1. Riul, A. et al. Artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir, 18, 239 - 245, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>