Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system provides power, water, refrigeration from one source

07.08.2006
When hurricanes, wars or other emergencies force authorities to respond, three essentials top their list of must-haves: water, electricity and refrigeration.

Now, in a project funded by the U.S. Army, two University of Florida engineers have designed, built and successfully tested a combined power-refrigeration system that can provide all three – and, with further development, be made compact enough to fit inside a military jet or large truck.

“If you’re in a forward base in Iraq, it costs you the same per gallon of water as it does per gallon of fuel,” said William Lear, a UF associate professor of mechanical and aerospace engineering. “It would be better to just have to send fuel out there, especially if you could get refrigeration and water out of it – which is what our system achieves.”

Lear and UF mechanical engineering professor S.A. Sherif have published several academic papers on various aspects of the system, which is being patented by UF. In November, they will present a paper discussing the system’s experimental results at the International Mechanical Engineering Congress & Exposition in Chicago.

Both the Federal Emergency Management Agency and the military now rely on large generators to produce electricity in hazard zones. For cooling, they either haul in ice or electricity-hogging refrigerators. Depending on the location and emergency, imported fresh water may be another major logistical challenge and expense.

Hoping to cut costs and simplify the process, the Army has provided a $750,000 grant to a small Gainesville company funding Lear and Sherif’s research on an alternative.

The engineering researchers’ solution: a small system that ties a novel gas turbine power plant to a heat-operated refrigeration system. The refrigeration makes the gas turbine more efficient, while also producing cool air and potable water. The turbine can run on conventional fossil fuels as well as biomass-produced fuels or hydrogen.

Lear said gas turbines are a common power generator used in everything from jet engines to electricity plants. The problem with traditional versions is that they lose efficiency both when not operated at full power and in warm temperatures, he said.

Seeking to erase this loss, he rerouted the path of gases passing through the turbine, cooling them via heat exchangers. Sherif, an expert in refrigeration, then tied the system to absorption units, cooling the gases still more.

Users can either tap all the cooling power to obtain peak efficiency for the turbine, or divert some for refrigeration or air conditioning. “You can decide how much of one you want versus how much of the other, depending on your needs,” Sherif said.

Lear said his experiments and computer models suggest that with all the cooling devoted to the turbine, it will be 5 percent to 8 percent more efficient than traditional turbines. With some cooling siphoned for other purposes, it was still 3 percent to 5 percent more efficient than the turbines. Contrasting traditional gas turbines, the system maintains its efficiency whether operated at peak or partial power.

A few percentage points might not seem like much, but it makes a big difference when fuel is scarce or expensive, particularly if refrigeration and water are added bonuses, Lear said. “Power companies would kill for a 1 percent gain,” he said.

The system, which makes water by condensing the turbine’s combustion gases, is capable of producing about one gallon of water for every gallon of fuel burned, Sherif said. The water would need to be treated to be potable, but even if untreated it could be used for cleaning or other purposes. Because the plant reuses gases so extensively, the power plant also has very low polluting emissions, Lear added.

Sherif, Lear and colleagues have built a working prototype of the plant for experiment and testing purposes. Housed in an engineering college laboratory, it appears at first as a maze of tubes and pipes reminiscent of a Dr. Seuss drawing. But a closer inspection reveals a carefully designed “flow pattern” routing gases through and around a small gas turbine, with dozens of electronic and pneumatic monitoring probes. Operators run the test plant from an adjacent control room.

Lear said further research is required to make the plant more compact and otherwise enhance its performance. That’s one of the goals of the Army’s Small Business Innovation Research Grant to the Gainesville company, Triad Research. He added that larger versions could be used in fixed locations as part of the normal power grid. For example, utilities could build the plant nearby a grocery store warehouse that required both electricity and cooling.

William Lear | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Power and Electrical Engineering:

nachricht Studying how unconventional metals behave, with an eye on high-temperature superconductors
13.12.2018 | Princeton University

nachricht An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes
13.12.2018 | Rutgers University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Foxes in the city: citizen science helps researchers to study urban wildlife

14.12.2018 | Ecology, The Environment and Conservation

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>