Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wall-to-wall power

06.11.2001


On a roll: solar panels could soon be as cheap and easy to print as wallpaper.
© Photodisc / NSU


Solar cells printed like wallpaper.

Solar cells might one day be produced by the roll, as cheaply and easily as wallpaper. Scientists in Arizona are using screen-printing, a technique developed for patterning fabrics, to produce plastic solar cells1.

The technique is another step towards the general availability of solar power from flexible devices on plastic sheets or glass panels. The basic materials of a photovoltaic cell are inexpensive, but combining them into a working device is currently costly. This limits our exploitation of the sun’s potential to provide clean energy.



The organic cells manufactured by Ghassan Jabbour and colleagues at the University of Arizona in Tucson have about a quarter of the efficiency of commercial silicon devices (which turn 10-20 per cent of light energy into electricity). But, being cheap to produce, they can make up in quantity what they lack in quality.

In conventional screen-printing, a taut piece of fabric, patterned by masking some areas with substances such as wax that repel colouring agents, is covered with ink or dye. The screen is then held horizontally over the object to be printed, and a rubber blade is swept across the back, pressing the coloured surface down to produce an image.

Jabbour’s group print very flat, very thin cells onto glass in a similar way. First, they coat the glass with a transparent, electrically conducting material that acts as one of the solar cell’s electrodes. On top of this, they lay down a thin film of a polymer, which helps to gather current from the photovoltaic material.

Finally, they deposit a blend of two organic compounds that convert light into electricity. One, a carbon-based molecule called a fullerene, produces charged particles that carry an electrical current when light shines onto the molecules. The other, a polymer, ferries the current to electrodes on the top and bottom of the cell.

Under blue light, these screen-printed solar cells have an efficiency of 4.3 per cent. They are probably less efficient for white sunlight, so there is work to be done before the devices are good enough for commercial use.

Organic solar cells were first reported last year by Bell Labs in the United States2. hese latest screen-printed cells are based on prototypes made by team member Sean Shaheen and colleagues earlier this year3.

References
  1. Shaheen, S. E., Radspinner, R., Peyghambarian, N. & Jabbour, G. E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Applied Physics Letters, 79, 2996 - 2998, (2001).

  2. Schon, J. H., Kloc, C.H. & Batlogg, B. Efficient photovoltaic energy conversion in pentacene-based heterojunctions. Applied Physics Letters, 77, 2473 - 2475, (2000).

  3. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Applied Physics Letters, 78, 841 - 843, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-5.html
http://www.nature.com/nsu/

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>