Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal-based jet fuel poised for next step

29.03.2006


A jet fuel comparable to Jet A or military JP 8, but derived from at least 50 percent bituminous coal, has successfully powered a helicopter jet engine, according to a Penn State fuel scientist.



"Because the fuel is 50 percent derived from coal, it could reduce our use of imported petroleum for this purpose by half," says Dr. Harold H. Schobert, professor of fuel science and director of Penn State’s Energy Institute. "We have shown in tests that the mix can go to at least 75 percent coal."

The fuel, provisionally designated JP900, is produced in one of two processes under investigation by Schobert. The process uses light cycle oil – a petroleum byproduct -- and coal-derived refined chemical oil -- a byproduct of the coke industry. The researchers mix the two components and add hydrogen. When distilled, jet fuel comes off as a distillate. The process can be carried out in existing refineries with some retrofitting and small amounts of the leftover components will feed into various portions of the petroleum stream. The lighter portions will go to the pool of chemicals that make gasoline and the heavier ones go to the diesel or fuel oil streams.


"The combustion tests showed that JP900 meets or exceeds almost all specification for JP8 and Jet A," Schobert told attendees at the 231st meeting of the American Chemical Society today (March 27) in Atlanta, Ga.

These tests showed that JP900 has a flash point higher than required for JP8, a lower viscosity and freezing point and a higher smoke point. The coal-based fuel is lower in aromatics – such compounds as benzene and toluene – than conventional jet fuels and is almost sulfur free. From an energy point of view, JP900 produces almost exactly the same Btu as JP8.

Not only does JP900 meet most of the specification for JP8, but it also has the high flash point required of JP5, naval jet fuel and the thermal stability of JP7, a high performance fuel.

While originally, this project began to develop jet fuel for the next generation of high performance aircraft that would require very thermally stable fuels. Now that fuel prices have soared and we need to lower fuel costs, develop secure fuel sources and decrease dependence on foreign oil, there is a major shift in thinking about fuel and its sources.

"The fact that our fuel is almost dead on to JP 8 is something that the Air Force likes," says Schobert. "This fuel was intended to be a high heat sink fuel, which it is, but it can also be used in existing engines."

The project now targets coal-based replacement for existing fuels with the hope that this will interest both commercial and military users. So far the Penn State project has produced 500 gallons of fuel in a pilot plant operated by Intertek of Warren, Pa. The Penn State researcher would now like to produce about 4,500 gallons, or about 100 barrels, of the fuel for future testing by the Air Force and others.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>