UK researchers find way to reduce power consumption of transistors in computer chips

University of Kentucky researchers have discovered a means of reducing gate leakage current of transistors in computer chips that will permit chip producers to continue developing more efficient and powerful chips with reduced power consumption.

Zhi Chen, associate professor of electrical and computer engineering, found that applying rapid thermal processing directly on gate insulators – used to control current flow of transistors in computer chips – can dramatically reduce the chips’ leakage current and correspondingly the power consumption. In fact, the technique can improve the insulating qualities of gate insulators so that their direct tunneling current is reduced by 10,000 to 100,000 times. No effect was found if rapid thermal processing was not directly applied on the gate insulators.

In order to improve computer chips’ performance, transistors’ size and gate insulators have to be continuously shrunken so that more components can be packed into a single chip. Computer chip producers were hitting a wall in downscaling the transistors and gate insulators because of their inability to reduce the leakage current of the existing gate insulators. This new technique will help the chip producers to develop more powerful chips with low-power consumption.

Chen and his team will present their findings in a paper to be presented Dec. 7-9 at the 2005 International Semiconductor Device Research Symposium in Bethesda, Md.

Media Contact

Dan Adkins EurekAlert!

More Information:

http://www.uky.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors