Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have these experts drilled the world’s smallest hole?

29.11.2005


Experts at Cardiff University have developed machinery so sophisticated that they can drill a hole narrower than a human hair.



Such precision has potentially major benefits in medical and electronic engineering.

The experts at the University’s multi-award-winning Manufacturing Engineering Centre, are drilling holes as small as 22 microns (0.022 mm) in stainless steel and other materials.


The human hair varies between 80 microns (0.08 mm) down to 50 microns (0.05 mm) in thickness.

"The holes we are now drilling in Cardiff with the electro-discharge machining (EDM) process could be the smallest in the world," said the Centre’s marketing director Frank Marsh.

"The standard rods available commercially are capable of making holes of 150 microns. Although lasers are able to make small holes, these are of poorer quality when compared to the EDM process. Lasers make holes that taper, whereas EDM makes parallel or vertical holes."

The process is achieved by creating a minute electrode, with a diameter of only 6 microns (0.006 mm), which was itself produced by manufacturing a highly precise wire electrode discharge grinder.

"It is thought that the Japanese conceived such a grinder in 1985 and subsequently a paper stated that they have made an electrode of 5 microns (0.005 mm) in diameter, however no further evidence has emerged," said Mr Marsh

The ability to produce such quality tiny holes in any conductive material represents a significant advance in mechanical engineering and will benefit designers in the medical and laboratory sciences, as well as electronic design engineers in creating smaller electronic systems which will cover a wide range of industrial and consumer industries.

In the new year, the Centre’s scientists will acquire new nano-technological equipment which will enable them to make even smaller holes and add surface materials of tiny thicknesses to finish optical, medical and other components.

Frank Marsh | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>