Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location system for wireless sensor networks

28.09.2005


In recent years a great amount of integrated radio circuits have come onto the market. With this type of component available a new kind of application has arisen: wireless sensor networks.



With these systems, sensors, instead of being inside the circuit itself, are installed in autonomous circuits. Thus, work on control and measurement can be distributed, e.g. the measurement of magnitudes over a geographically widespread area. Nevertheless, for the systems described here to be economically viable, each node has to have very low costs, both in its design and in its production. The most important advantage of this type of network is that of duplication: with so many sensors participating in the operation of the network, if one fails, another will fulfil the function until the failed item can be replaced.

However, organising co-operation between so many nodes is no easy task. Given that all nodes have the same hardware and the same software and, moreover, are limited both in energy consumption and in the capacity of the process, the protocols used in these types of networks have to be designed to operate in these very special conditions. In the case in question, the co-operation processes may be greatly simplified if the location of each node is known and how the network is organised geographically. The great number of nodes makes it impossible to fix the position of all these manually; an automated method for each node to calculate its own position needs to be found.


In this PhD thesis, a new algorithm for finding the position of the nodes is put forward and developed. To this end, the distances separating the nodes are utilised. However, given that each sensor has to be very economic, the quality of measurement of these distances is not expected to be high and, consequently, location errors appear. Thus, the algorithm proposed here attempts to calculate the best estimate of the node position, in the knowledge that the distances involved have errors.

Finally, to analyse the results obtained with this algorithm, a simulation platform has been designed which enables a comparison of the performance of the method described here with that of other algorithms put forward in recent years. In this way the computational load imposed at the node can be tested and how the presence of errors affects the measurements in the result obtained.

Moreover, the algorithm was implemented in a real node in order to demonstrate that it can be used in the environment for which it was designed.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>