Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space test for Swiss-designed solar antennas

28.09.2005


A satellite equipped with novel solar antennas developed by the EPFL (Ecole Polytechnique Federale de Lausanne) will be part of the payload on the Russian rocket Cosmos, scheduled for launch September 30 from Plesetsk, Russia. This satellite incorporates advanced technology that combines antenna functions and solar cells on a single surface.



The rocket’s payload will also include a satellite designed and built by students from several European universities, including a group of EPFL students.

Because of the enormous cost of getting to their destination, structures used in space applications have to be lighter, smaller, and more reliable than their Earth-bound counterparts. In confronting this challenge, the European Space Agency (ESA) drew upon the recognized expertise of the Electromagnetics and Acoustics Laboratory at the EPFL in Switzerland, asking them to develop a single surface that could function as both antenna and solar cell array.


As EPFL professor Juan Mosig notes, “The planar antennas have plenty of quiet real estate available for solar cells,” and a combined surface is ideal as it results in a substantial efficiency gain and weight reduction for the satellite.

Advances in both solar cell and antenna technology have been made in the development of the antenna, nicknamed Asolant (Advanced SOLar ANTenna). Six years after initiation, it’s ready for its new life in space. The structure is light and thin. It’s strong and provides its own source of energy. Its gallium arsenide solar cells are adapted to the conditions of space. The antenna will communicate with Earth, sending and receiving GPS signals as well as signals from mobile telephone networks such as Orbcomm.

The Zurich-based firm HTS handled the antennas’ manufacture, and the structure will ride aboard a Rubin satellite, adapted to the Electromagnetics and Acoustics Lab’s specifications by the German company OHB Systems.

Earth-based solar antenna applications

Because Asolant is autonomous, providing its own power source with the solar cells on its surface, it also has the potential for many exceedingly practical Earth-based applications. Sheets of solar antennae on residential rooftops could simultaneously power the home and send and receive TV, radio and wireless phone and internet signals. Buoy-based solar antennas could improve atmospheric and oceanic data-gathering capabilities, providing better early-warning systems for hurricanes, tsunamis and other natural disasters. Solar antennas could be used in increasingly power-hungry cell phones. Information from remote regions could be sent via autonomous transmitters.

The EPFL’s Electromagnetics and Acoustics Lab has spun off a Swiss start-up company, JAST, that is in the process of studying the market possibilities of these kinds of applications.

A student satellite

The Cosmos rocket will also launch a student satellite. This ESA-sponsored project, carried out in the framework of the Student Space Exploration and Technology Initiative (SSETI), caught the attention of a small group of EPFL students. The electronics they developed will contribute to the satellite’s propulsion system, according to PhD student Renato Krpoun. After undergoing several tests in the first few months in orbit, the satellite will ultimately function as an amateur radio transponder.

Mary Parlange | alfa
Further information:
http://itopwww.epfl.ch/LEMA/Asolant/
http://www.jast.ch
http://actualites.epfl.ch/index.php?module=Presseinfo&func=view_com&id=302

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>