Manchester develops new wave energy device: The Manchester Bobber

The University of Manchester and the University of Manchester Intellectual Property Limited (UMIP) in partnership with Mowlem plc and Royal Haskoning, are developing an innovative and patented new wave energy device known as the ‘Manchester Bobber’.


The device will be showcased at the New & Renewable Energy Centre (NaREC) in Blyth, Northumberland, on September 19th (Press Invitation below).

The Manchester Bobber’s inventive features utilise the rise and fall (or ‘bobbing’) of the water surface. This movement transmits energy, which is then extracted by the mechanics to drive a generator and produce electricity.

The vision is to have a series of Bobbers working together to generate electricity. One concept which is currently being explored is the use of decommissioned offshore rigs as platforms for the devices.

Professor Peter Stansby, co-inventor of the Manchester Bobber and Professor of Hydrodynamics at The University of Manchester, said: “Offshore wave energy represents a substantial concentrated ‘green’ energy source for an island state like the UK.

“Energy from the sea may be extracted in many ways and harnessing the energy from the bobbing motion of the sea is not a new idea. It is the hydrodynamics of the float employed by the Manchester Bobber that provides the vital connection to generating electricity”.

The Bobber’s unique features include:

The vulnerable mechanical and electrical components are housed in a protected environment well above sea level, which makes for ease of accessibility.

All mechanical and electrical components are readily available, resulting in high reliability compared to other devices, with a large number of more sophisticated components.

The Manchester Bobber will respond to waves from any direction without requiring adjustment.

The ability to maintain and repair specific ‘bobber’ generators (independent of others in a linked group) means that generation supply to the network can continue uninterrupted.

The initial concept for the Manchester Bobber was conceived in January 2004 via a 12 month Carbon Trust award. The design, development and testing of the device has been carried out at the University of Manchester led by Professor Peter Stansby and Dr Alan Williamson.

Phase One of the project (testing of 1/100th scale working model) was successfully completed in January 2005. Phase Two, which is commencing now, involves a 1/10th scale device that has been constructed and will be tested at NaREC (the New and Renewable Energy Centre) over a two week period. Mowlem plc and Royal Haskoning are also developing and costing conceptual designs for a full scale platform. Phase Three will involve a full scale prototype being constructed and tested in parallel with detailed costings and engineering design for the optimum full scale concept from Phase 2.

The project team see the Manchester Bobber as a key international development at the forefront of the renewable energy sector. Dr Frank Allison, Assistant Project Manager from University of Manchester Intellectual Property Ltd (UMIP) said: “We are really excited about the potential of this project and can’t wait to get the prototype Manchester Bobber constructed and tested over the next few weeks, it will also be an ideal opportunity for people from the industry to come and witness this principal milestone and important achievement.”

Media Contact

Simon Hunter alfa

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Results for control of pollutants in water

Brazilian scientists tested a simple and sustainable method for monitoring and degrading a mixture of polycyclic aromatic hydrocarbons, compounds present in fossil fuels and industrial waste. An article published in the journal Catalysis…

A tandem approach for better solar cells

Perovskite-based solar cells were first proved in 2009 to have excellent light-absorbing properties of methylammonium lead bromide and methylammonium lead iodide, collectively referred to as lead halide perovskites or, more…

The behavior of ant queens is shaped by their social environment

Specialization of ant queens as mere egg-layers is reversible / Queen behavioral specialization is initiated and maintained by the presence of workers. The queens in colonies of social insects, such…

Partners & Sponsors