Manchester develops new wave energy device: The Manchester Bobber

The University of Manchester and the University of Manchester Intellectual Property Limited (UMIP) in partnership with Mowlem plc and Royal Haskoning, are developing an innovative and patented new wave energy device known as the ‘Manchester Bobber’.


The device will be showcased at the New & Renewable Energy Centre (NaREC) in Blyth, Northumberland, on September 19th (Press Invitation below).

The Manchester Bobber’s inventive features utilise the rise and fall (or ‘bobbing’) of the water surface. This movement transmits energy, which is then extracted by the mechanics to drive a generator and produce electricity.

The vision is to have a series of Bobbers working together to generate electricity. One concept which is currently being explored is the use of decommissioned offshore rigs as platforms for the devices.

Professor Peter Stansby, co-inventor of the Manchester Bobber and Professor of Hydrodynamics at The University of Manchester, said: “Offshore wave energy represents a substantial concentrated ‘green’ energy source for an island state like the UK.

“Energy from the sea may be extracted in many ways and harnessing the energy from the bobbing motion of the sea is not a new idea. It is the hydrodynamics of the float employed by the Manchester Bobber that provides the vital connection to generating electricity”.

The Bobber’s unique features include:

The vulnerable mechanical and electrical components are housed in a protected environment well above sea level, which makes for ease of accessibility.

All mechanical and electrical components are readily available, resulting in high reliability compared to other devices, with a large number of more sophisticated components.

The Manchester Bobber will respond to waves from any direction without requiring adjustment.

The ability to maintain and repair specific ‘bobber’ generators (independent of others in a linked group) means that generation supply to the network can continue uninterrupted.

The initial concept for the Manchester Bobber was conceived in January 2004 via a 12 month Carbon Trust award. The design, development and testing of the device has been carried out at the University of Manchester led by Professor Peter Stansby and Dr Alan Williamson.

Phase One of the project (testing of 1/100th scale working model) was successfully completed in January 2005. Phase Two, which is commencing now, involves a 1/10th scale device that has been constructed and will be tested at NaREC (the New and Renewable Energy Centre) over a two week period. Mowlem plc and Royal Haskoning are also developing and costing conceptual designs for a full scale platform. Phase Three will involve a full scale prototype being constructed and tested in parallel with detailed costings and engineering design for the optimum full scale concept from Phase 2.

The project team see the Manchester Bobber as a key international development at the forefront of the renewable energy sector. Dr Frank Allison, Assistant Project Manager from University of Manchester Intellectual Property Ltd (UMIP) said: “We are really excited about the potential of this project and can’t wait to get the prototype Manchester Bobber constructed and tested over the next few weeks, it will also be an ideal opportunity for people from the industry to come and witness this principal milestone and important achievement.”

Media Contact

Simon Hunter alfa

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors