Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of titanium in hydrogen storage

02.09.2005


As part of ongoing research to make hydrogen a mainstream source of clean, renewable energy, scientists from the U.S. Department of Energy’s Brookhaven National Laboratory have determined how titanium atoms help hydrogen atoms attach to an aluminum surface. Their study isolates the role of titanium, which is used as a catalyst in the crucial first step to trap hydrogen within a particular class of hydrogen-storage materials. The work may also help identify and develop similar hydrogen-storage systems.



Brookhaven chemist Santanu Chaudhuri will present this research at the 230th national meeting of the American Chemical Society in Washington, D.C. The talk is scheduled for Thursday, September 1, at 3:40 p.m. in room 142 of the Washington Convention Center.

To be a mainstream source of fuel, hydrogen must be stored safely and efficiently. Conventional high-pressure storage tanks can be dangerous and are too big and heavy for certain applications, such as hydrogen-based fuel cells in automobiles. Hydrogen-storage materials, however, incorporate hydrogen safely and compactly, and temporarily hold large quantities of it that can be recovered easily under safe, controlled conditions.


"A hydrogen-storage material must be able to store hydrogen quickly under ’normal’ conditions -- that is, without very high temperatures and pressures," said Chaudhuri. "In tiny amounts, an appropriate catalyst, such as titanium, can speed up the reaction and make the hydrogen-storage process suitable for practical applications. Our study has helped us better understand the role of these catalysts."

Through this research, Chaudhuri and his collaborator, Brookhaven chemist James Muckerman, hope to improve the performance of sodium alanate, a hydrogen-storage material composed of sodium and aluminum hydride. Sodium alanate, known as a "complex metal hydride," expels hydrogen gas (the fuel) and aluminum when heated, leaving a mixture of sodium hydride and metallic aluminum. But because neither aluminum nor sodium hydride absorb hydrogen well, putting the hydrogen back in -- to reform sodium alanate and allow reuse of the material -- becomes difficult.

"We found that aluminum absorbs significantly more hydrogen -- and does so more quickly and at lower temperatures -- when a small number of titanium atoms are incorporated into its surface," Chaudhuri said.

Chaudhuri and Muckerman created a computer model that provides a plausible mechanism of the reaction. Their model agrees with an experimental x-ray absorption study of sodium alanate, performed at the National Synchrotron Light Source, a facility at Brookhaven that produces x-ray, ultraviolet, and infrared light for research. Chaudhuri and Muckerman’s collaborators at Brookhaven used x-rays to "see" and thus calculate how the titanium atoms subtly changed the atomic-level structure of the aluminum, resulting in a more hydrogen-absorbent surface. Results from these two studies agree on the role of titanium atoms on an aluminum surface and mechanisms of subsequent steps in hydrogen capture.

In the future, Chaudhuri and Muckerman’s group plans to study the subsequent steps in the sodium alanate hydrogen-storage process, in which aluminum and hydrogen react with sodium hydride to reform the starting material.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>