Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution-eating bacteria produce electricity

07.06.2005


Microbiologists seeking ways to eliminate pollution from waterways with microbes instead discovered that some pollution-eating bacteria commonly found in freshwater ponds can generate electricity. They present their findings today at the 105th General Meeting of the American Society for Microbiology.



"The bacteria are capable of continuously generating electricity at levels that could be used to operate small electronic devices. As long as the bacteria are fed fuel they are able to produce electricity 24 hours a day," says Charles Milliken of the Medical University of South Carolina, who conducted the research with colleague Harold May.

The use of bacteria to create electricity is not necessarily a new idea. Other researchers have developed microbial fuel cells using simple sugars or organic waste products. What makes Milliken’s and May’s discovery so unique is the bacterium itself. It is the member of a genus known as Desulfitobacterium, which up until now was not known to have the capacity to generate electricity. These bacteria are most commonly known for their ability to breakdown and detoxify some of the most problematic environmental pollutants, including PCBs and some chemical solvents.


"These bacteria are very diverse in their metabolic capabilities, including the food that they can consume. That means that these bacteria can convert a large number of different food sources into electricity," says Milliken. "The technology could be used to assist in the reclamation of wastewaters, thereby resulting in the removal of waste and generation of electricity."

Another unique characteristic of these bacteria is that they are the first known spore-forming bacteria shown to continuously generate electricity. A bacterial spore is a dormant stage of growth for the organism and is highly resistant to heat, radiation and drying. Such characteristics could prove useful in future microbial fuel cell designs where the device need not always be operational but must survive long periods of hazardous conditions before being used.

"The generation of electricity is one of those things that we tend not to think about during our daily routines. When we do, thoughts on bacteria usually do not enter our minds. Bacteria make you sick, they are important in the processing of food, but making electricity? Surely that is not part of the story. But it is," says Milliken.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>