Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the big step from electronics to photonics by modulating a beam of light with electricity

20.05.2005


Much of our electronics could soon be replaced by photonics, in which beams of light flitting through microscopic channels on a silicon chip replace electrons in wires. Photonic chips would carry more data, use less power and work smoothly with fiber-optic communications systems. The trick is to get electronics and photonics to talk to each other.Now Cornell University researchers have taken a major step forward in bridging this communication gap by developing a silicon device that allows an electrical signal to modulate a beam of light on a micrometer scale.


Cornell Nanophotonics Group - Scanning electron microscope image of the ring coupled to the waveguide with a zoom-in picture of the coupling region. Copyright © Cornell University


Cornell Nanophotonics Group - Schematic layout of the ring resonator based modulator. The inset shows a cross-section of the ring. Copyright © Cornell University



Other electro-optical modulators have been built on silicon, but their size is on the order of millimeters, too large for practical use in integrated circuit chips. (a micrometer, or micron, is one millionth of a meter, or one thousandth of a millimeter.) Smaller modulators have been made using compound semiconductors such as gallium arsenide, but silicon is preferable for its ability to be integrated with current microelectronics.

The work is described in a paper published in the May 19, 2005, issue of Nature by Michal Lipson, Cornell assistant professor of electrical and computer engineering, and her research group.


Their modulator uses a ring resonator -- a circular waveguide coupled to a straight waveguide carrying the beam of light to be modulated. Light traveling along the straight waveguide loops many times around the circle before proceeding. The diameter of the circle, an exact multiple of a particular wavelength, determines the wavelength of light permitted to pass. For the experiments reported in Nature, the ring used was 12 microns in diameter to resonate with laser light at a wavelength of 1,576 nanometers, in the near infrared.

The ring is surrounded by an outer ring of negatively doped silicon, and the region inside the ring is positively doped, making the waveguide itself the intrinsic region of a positive-intrinsic-negative (PIN) diode. When a voltage is applied across the junction, electrons and holes are injected into the waveguide, changing its refractive index and its resonant frequency so that it no longer passes light at the same wavelength. As a result, turning the voltage on switches the light beam off.

The PIN structure has been used previously to modulate light in silicon using straight waveguides. But because the change in refractive index that can be caused in silicon is quite small, a very long straight waveguide is needed. Since light travels many times around the ring resonator, the small change has a large effect, making it possible to build a very small device.

In tests, the researchers found that the device could completely interrupt the propagation of light with an applied voltage of less than 0.3 volts. The researchers note in their paper that devices using a PIN configuration have been relatively slow in switching but that the ring resonator configuration also eliminates this problem. Tests using a pulse-modulated electrical signal produced an output with a very similar waveform to the input at up to 1.5 gigabits per second.

The Nature paper is titled "Micrometer-scale Silicon Electro-Optic Modulator." Co-authors are Cornell graduate students Qianfan Xu and Bradley Schmidt and postdoctoral researcher Sameer Pradhan, now at Intel Corp.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>