Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible tactile sensors could help robots work better

20.05.2005


A robot’s sensitivity to touch could be vastly improved by an array of polymer-based tactile sensors that has been combined with a robust signal-processing algorithm to classify surface textures. The work, performed by a team of researchers at the University of Illinois at Urbana-Champaign, is an essential step in the development of robots that can identify and manipulate objects in unstructured environments.



"We are developing artificial tactile sensors that will imitate the functionality and efficiency found in biological structures such as human fingers," said Chang Liu, a professor of electrical and computer engineering at Illinois. "We have shown that simple, low-cost sensor arrays can be used to analyze and identify surface textures."

Biological sensors provide a wealth of information concerning the shape, hardness and texture of an object. Robots, which typically possess a single pressure sensor in their grip, can’t determine whether an object is hard or soft, or how hard it is squeezing an object.


"One of the unsolved problems in robotics is the handling of delicate objects such as eggs," said Douglas Jones, a professor of electrical and computer engineering. "The distributed sensing we have in our hands allows us to grab an egg with enough force that it won’t slip, but without so much force that it breaks. One of our goals is to develop an array of sensors that provides robotic systems with a similar source of tactile feedback."

The research team consisted of Liu and Jones (who are also researchers at the Beckman Institute for Advanced Science and Technology), and graduate students Jonathan Engel and Sung-Hoon Kim. They describe the construction and operation of their tactile sensory array in the May issue of the Journal of Micromechanics and Microengineering, published by the Institute of Physics (http://www.iop.org/EJ/journal/JMM).

The sensors are fabricated from an inexpensive polymer sheet using photolithographic patterning techniques. In the reported work, the researchers created a 4 x 4 array (16 sensors) and evaluated its performance.

"Each sensor resembles a little drum head about 200 microns in diameter with a tiny bump in the center," Engel said. "On the surface of the drum head, we deposit a thin-metal strain gauge that changes resistance when stretched. Pressure on the sensor is converted into digital data that is sent to a computer and analyzed with a signal-processing algorithm."

In any detection problem, implementation is a key issue. "Speed is important, but complex tasks like tactile sensing tend to be very time consuming," Kim said. "We came up with advanced algorithms that make the process more computationally efficient. Our algorithms can quickly determine which sensors are activated in the array, and whether the object is flat, or shaped like a box or the letter X."

In future work, the researchers want to improve efficiency by further simplifying the signal-processing algorithm so it can be performed by circuitry mounted on the same substrate as the sensor. They also want to build larger arrays with distributed sensors, and develop more effective ways to import and utilize sensory data.

Such improvements could expand the functionality of robots in assembly-line environments and facilitate the development of autonomous vehicles.

"Our ultimate goal is to allow robots to operate in unstructured environments," Liu said. "To build more trust between humans and robots, we must make reliable sensor systems that can analyze their physical surroundings quickly and accurately. Our work is a step toward making trustworthy sensors that give robotics the power to really help people."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>