Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot walks, balances like a human

12.05.2005


If you nudge this robot, it steps forward and catches its balance---much like a human




The machine called RABBIT, which resembles a high-tech Tin Man from "The Wizard of Oz," minus the arms, was developed by University of Michigan and French scientists over six years. It’s the first known robot to walk and balance like a human, and late last year, researchers succeeded in making RABBIT run for six steps. It has been able to walk gracefully for the past 18 months.

U-M researcher Jessy Grizzle, who developed the control theory for the robot, said that the balancing ability programmed into the robot has many applications in the medical field, such as so-called smart prosthetics that adapt to the wearer, and physical rehabilitation aids to help people regain the ability to walk.


Bipedal robots---or two-legged walking machines---in existence today walk flat-footed, with an unnatural crouching or stomping gait, said Grizzle, professor of electrical engineering and computer science.

Up until RABBIT, scientists produced stability in two-legged walking machines largely through extensive trial and error experiments during development, Grizzle said. Current walking machines use large feet to avoid tipping over and do not require the robot’s control system to be endowed with a real understanding of the mechanics of walking or balance, Grizzle said. If you provided these robots with a pair of stilts or asked them to tip-toe across the room, they would just fall over.

RABBIT was built without feet. Its legs end like stilts so that it pivots on a point when it moves forward. "If you build a robot that pivots on a point you must understand how the different parts interact dynamically, or else it will fall over," Grizzle said. If a robot has no feet, it’s impossible to "cheat."

The U-M/French control theory for walking, which was published in a recent paper in the International Journal of Robotics Research, gives scientists an analytical method that can predict in advance how the robot will move, Grizzle said.

"The concept of stability is reduced to two formulas," Grizzle said. "It’s a matter of understanding enough about the dynamics of walking and balance so that you can express with mathematical formulas how you want the robot to move, and then automatically produce the control algorithm that will induce the desired walking motion on the very fist try."

Grizzle’s work has promising applications in designing human prosthetics.

"Our analytic method is very cost effective by reducing the amount of experimental work that goes into motion design," Grizzle said. "If you can take properties of a patient, their height, weight, how the valid leg functions, etc., maybe you could more quickly have the prosthetic adapt its characteristics to the person, instead of the person adapting his gait to the prosthetic---which is essentially what happens now. These things are dreams, we’re not there yet. But you need principles to get there."

Other applications include rehabilitative walking aids for spinal injury patients, machines designed for home use that can climb stairs or robots for use in exploratory missions over rough terrain.

RABBIT is part of France’s ROBEA project (Robotics and Artificial Entity), which involves seven laboratories and researchers in mechanics, robots and control theory. The machine is housed in France’s Laboratoire Automatique de Grenoble,

Video of RABBIT shot by researchers during experiments shows a pair of mechanical legs walking in a circle while attached to a boom that keeps it from falling over sideways but does not guide or control its forward momentum. When pushed from behind by researcher Eric Westervelt, formerly a student of Grizzle’s and now an assistant professor of mechanical engineering at Ohio State University, RABBIT lurches forward, then rights itself and continues its even forward stride.

U-M became involved in the research in 1998, when Grizzle met with the lead researcher on the ROBEA project while on sabbatical in Strasbourg, France. Grizzle was able to bring his expertise in control theory, something the researchers designing the robot in Strasbourg were without.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu/news/Releases/2005/Jan05/img/rabbit/Rabbit_anime.gif
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>