Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mathematical model better describes transistor behavior

11.05.2005


Penn State and Philips researchers have merged the best features of their respective approaches to produce a new mathematical model that describes the behavior of the MOS transistor in a wide class of integrated circuits found in the majority of electronic devices from computers to digital watches to communications systems.



Certain circuits can only be simulated accurately using the new approach, known as the PSP model, including passive mixers used in mobile phones to increase battery life and current-ratio based circuits used in analog to digital converters.

In addition, PSP has better RF capabilities than the existing models and accurately predicts transistor behavior up to frequencies well above 50 GHz.


Dr. Gennady Gildenblat, professor of electrical engineering, leads PSP development at Penn State. He says, "Fabricating integrated circuits is expensive and improving them by trial and error adds significantly to that expense. Accurate models that provide detailed mathematical descriptions offer engineers the chance to do science-based engineering and to get it right the first time." Gildenblat will detail PSP in an invited talk, "Introduction to PSP MOSFET Model," at the Nanotech 2005 International Conference, May 10, in Anaheim, Ca. His co-authors are X. Li, H. Wang and W. Wu, electrical engineering graduate students at Penn State, and R. van Langevelde, A. J. Scholten, G. D. J. Smit and D. B. M. Klaassen, Philips Research Laboratories, The Netherlands.

The key variable in the PSP model is surface potential at the interface between the silicon and silicon dioxide in the transistor. Since PSP is based on this physical variable, it yields better predictions of the behavior of integrated circuits than is possible with alternative models, especially when devices are miniaturized or are operated at their limits, the developers say.

Models, such as PSP, which describe transistors in a mathematical way, are used in circuit simulators. For example, PSP has been tested on a simulation of a passive mixer, a surprisingly difficult problem that Gildenblat and others only accomplished recently. In addition, PSP has been verified against measurements on transistors from various manufacturers, including those made with the latest technology.

All details of the PSP model are being made available on the Internet. Philips SIMKit software allows PSP to be directly coupled to many popular circuit simulators.

Speaking of the Penn State/Philips collaboration, Dr. Dirk Klaassen, research fellow at Philips Research, says, "Our cooperation brings together the best fundamental academic and pragmatic industrial knowledge and expertise on compact modeling. It directly ties our combined deep understanding of the physical behavior of MOS transistors onto the requirements set by IC designers and the application areas most relevant to them."

PSP is being submitted to the Compact Model Council (CMC) as a candidate for standardization. The Council represents 27 major semiconductor companies that use models. The Council chooses candidates for standardization based on the technical needs of its members. The CMC is scheduled to select a new model for CMOS transistors later this year.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>