Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists create high-speed integrated nanowire circuits

28.04.2005


Low-temperature fabrication and high-quality results could reduce electronics’ reliance on silicon



Chemists and engineers at Harvard University have made robust circuits from minuscule nanowires that align themselves on a chip of glass during low-temperature fabrication, creating rudimentary electronic devices that offer solid performance without high-temperature production or high-priced silicon.

The researchers, led by chemist Charles M. Lieber and engineer Donhee Ham, produced circuits at low temperature by running a nanowire-laced solution over a glass substrate, followed by regular photolithography to etch the pattern of a circuit. Their merging of low-temperature fabrication and nanowires in a high-performance electronic device is described this week in the journal Nature.


"By using common, lightweight and low-cost materials such as glass or even plastic as substrates, these nanowire circuits could make computing devices ubiquitous, allowing powerful electronics to permeate all aspects of living," says Lieber, the Mark Hyman Jr. Professor of Chemistry in Harvard’s Faculty of Arts and Sciences. "Because this technique can create a high-quality circuit at low temperatures, it could be a technology that finally decouples quality electronics from single crystal silicon wafers, which are resilient during high-temperature fabrication but also very expensive."

Lieber, Ham and colleagues used their technique to produce nanowire-based logical inverters and ring oscillators, which are inverters in series. The ring oscillator devices, which are critical for virtually all digital electronics, performed considerably better than comparable ring oscillators produced at low temperatures using organic semiconductors, achieving a speed roughly 20 times faster. The nanowire-derived ring oscillators reached a speed of 11.7 megahertz, outpacing by a factor of roughly 10,000 the excruciatingly slow performance attained by other nanomaterial circuits.

"These nanowire circuits’ performance was impressive," says Ham, assistant professor of electrical engineering in Harvard’s Division of Engineering and Applied Sciences. "This finding gives us confidence that we can ramp up these elementary circuits to build more complex devices, which is something we now plan to do."

Lieber and Ham say these functional nanowire circuits demonstrate nanomaterials’ potential in electronics applications. The circuits could be used in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays, the scientists write in Nature; on a larger scale, such circuits could provide a foundation for more complex nanoelectronics. The technique Lieber and Ham used to produce a nanowire-based circuit on a glass substrate is also compatible with other commonplace materials such as plastics, broadening its potential applicability.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>