Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth in biomass could put U.S. on road to energy independence

22.04.2005


Relief from soaring prices at the gas pump could come in the form of corncobs, cornstalks, switchgrass and other types of biomass, according to a joint feasibility study for the departments of Agriculture and Energy.



The recently completed Oak Ridge National Laboratory report outlines a national strategy in which 1 billion dry tons of biomass – any organic matter that is available on a renewable or recurring basis – would displace 30 percent of the nation’s petroleum consumption for transportation. Supplying more than 3 percent of the nation’s energy, biomass already has surpassed hydropower as the largest domestic source of renewable energy, and researchers believe much potential remains.

"Our report answers several key questions," said Bob Perlack, a member of ORNL’s Environmental Sciences Division and a co-author of the report. "We wanted to know how large a role biomass could play, whether the United States has the land resources and whether such a plan would be economically viable."


Looking at just forestland and agricultural land, the two largest potential biomass sources, the study found potential exceeding 1.3 billion dry tons per year. That amount is enough to produce biofuels to meet more than one-third of the current demand for transportation fuels, according to the report.

Such an amount, which would represent a six-fold increase in production from the amount of biomass produced today, could be achieved with only relatively modest changes in land use and agricultural and forestry practices.

"One of the main points of the report is that the United States can produce nearly 1 billion dry tons of biomass annually from agricultural lands and still continue to meet food, feed and export demands," said Robin Graham, leader for Ecosystem and Plant Sciences in ORNL’s Environmental Sciences Division.

The benefits of an increased focus on biomass include increased energy security as the U.S. would become less dependent on foreign oil, a potential 10 percent reduction in greenhouse gas emissions and an improved rural economic picture.

Current production of ethanol is about 3.4 billion gallons per year, but that total could reach 80 billion gallons or more under the scenario outlined in this report. Such an increase in ethanol production would see transportation fuels from biomass increase from 0.5 percent of U.S. consumption in 2001 to 4 percent in 2010, 10 percent in 2020 and 20 percent in 2030. In fact, depending on several factors, biomass could supply 15 percent of the nation’s energy by 2030.

Meanwhile, biomass consumption in the industrial sector would increase at an annual rate of 2 percent through 2030, while biomass consumption by electric utilities would double every 10 years through 2030. During the same time, production of chemicals and materials from bio-based products would increase from about 12.5 billion pounds, or 5 percent of the current production of target U.S. chemical commodities in 2001, to 12 percent in 2010, 18 percent in 2020 and 25 percent in 2030.

Nearly half of the 2,263 million acres that comprise the land base of the U.S. has potential for growing biomass. About 33 percent of the land area is classified as forest, 26 percent as grassland, 20 percent as cropland, 13 percent as urban areas, swamps and deserts, and 8 percent as special uses such as public facilities.

The report, titled "Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply," was sponsored by DOE’s Office of Energy Efficiency and Renwable Energy, Office of Biomass Program. Lynn Wright and Anthony Turhollow of ORNL, Bryce Stokes of the USDA Forest Service and Don Erbach of the USDA Agriculture Research Service are co-authors of the report. The complete report is available at: http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>