Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers use ’shaped’ laser pulses in ’ultra-wideband’ research

06.04.2005


Engineers at Purdue University have developed a technique that could result in more accurate "ultra-wideband" radio signals for ground-penetrating radar, radio communications and imaging systems designed to see through walls.

The researchers first create laser pulses with specific "shapes," which precisely characterize the changing intensity of light from the beginning to end of each pulse. The pulses are then converted into electrical signals for various applications.

By controlling the shapes of laser pulses, the researchers are able to adjust the frequencies of the resulting radio signals and to produce signals with higher frequencies than are otherwise possible. Shorter signals make it easier to screen out interference and enhance image resolution, promising to improve the accuracy of systems used to detect landmines and other underground objects and for newly emerging devices that can look through walls and see what’s on the other side. "You want the best spatial resolution possible if you have two items buried close to one another," said Jason McKinney, a visiting assistant professor of electrical and computer engineering at Purdue. "If your pulse is too long, you get a combined reflection from both items back, but if your pulse is short enough, you get a separate reflection from each."



A similar situation arises in wireless communications. When radio signals are transmitted from one antenna to another, some travel directly to the second antenna while others bounce off of buildings and other objects along the way, causing "noise," or interference. By shaping the laser pulses so they are "narrow," shorter electronic signals can be created. The shorter the signals, the easier it is to pick them out from the noisy, interfering signals by the time they arrive at the receiving end of the transmission. The researchers’ technique will be detailed in a paper to appear in the April issue of IEEE Microwave and Wireless Components Letters, a journal published by the Institute of Electrical and Electronics Engineers. The paper was written by Ingrid S. Lin, a Purdue doctoral student, McKinney and Andrew Weiner, a professor of electrical and computer engineering.

Ultra-wideband technology, commonly referred to as UWB, has numerous potential applications, including high-speed handheld wireless communications for consumer electronics, radar systems in cars that might be used to prevent collisions and the development of "personal area networks," or wireless networks linking computer equipment, personal digital assistants and other devices within a person’s workspace.

While commercially available electronic devices produce a fixed set of wideband frequencies, the Purdue team is able to adjust the shapes of optical pulses and the resulting electrical signal, which means more precisely controlled ultra-wideband frequencies can be produced. "The main innovation is the ability to define what we want," McKinney said. "We’re able to say, ’Here is what I want, give it to me, and the system produces the desired signal.’"

The innovation could have laboratory applications in testing and research and in the development of ultra-wideband and wireless radio systems. Each laser pulse lasts about 300 femtoseconds, or three-tenths of a trillionth of a second. These pulses are processed using "optical arbitrary waveform technology" pioneered by Purdue researchers led by Weiner, which results in a three-nanosecond laser pulse. "There are commercial boxes that generate pulsed electrical signals, but the user has no control over the shape of these signals," McKinney said. "Because we can create desired shapes of pulsed light, we are able to create electrical signals that you can’t buy a commercial box to make. The pulse is designed to produce the desired electrical ’waveform,’ or a shaped electrical signal that evolves over time in a user-defined way."

The radio-frequency signal is obtained after a device converts the laser pulse into a radio signal for radar and wireless communications. "Our goal is to improve radio frequency communications, impulsive radar and other applications in the blossoming area of ultra-wideband radio frequency systems," McKinney said.

The work has been funded by the U.S. Army Research Office.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Jason D. McKinney, (765) 494-3454, mckinnjd@purdue.edu

Andrew M. Weiner, (765)494-5574, amw@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>