Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Turbulence In The Fast Lane at Mach 10 And Beyond

17.03.2005


Although NASA’s X-43A and other hypersonic airplanes use air-breathing engines and fly much like 747s, there’s a big difference between ripping air at Mach 10 (around 7,000 mph) and cruising through it at 350 mph.

These differences are even more pronounced when hypersonic aircraft sip rarified air at 100,000 feet, while commercial airliners gulp the much thicker stuff at 30,000. Aero-thermodynamic heating is a very big deal at Mach 10. The critical point comes where air changes from flowing smoothly across a surface < laminar flow < to when it becomes chaotic < turbulent flow.

Aero-thermodynamic heating largely determines the engine size, weight, choice of materials and overall size in hypersonic airplanes. So engineers would like to have a much better understanding of what triggers turbulence and how they can control it at hypersonic speeds. Air goes from laminar to turbulent at what engineers call the "boundary layer." They understand how this happens at slower speeds, but they’re still grappling with which factors influence it at hypersonic speeds.



University of Arizona Associate Professor Anatoli Tumin, of Aerospace and Mechanical Engineering (AME), is among those studying the problem and has developed a model that predicts the surface roughness effects on the transition from laminar to turbulent flow at hypersonic speeds. His theory has a lot to do with partial differential equations, Navier-Stokes equations and other brain-taxing mathematics that Tumin and Applied Math Ph.D. student Eric Forgoston have grappled with during the past couple of years. "In principle, the theory tells us what the optimal perturbations are that will lead to turbulent flow," Tumin said. "Now we can explore different geometries for roughness elements to see which are best. We can explore how to space them and where we should position them."

The researchers will soon run a supercomputer simulation to compare their theory with what actually happens when air flows across a roughened surface at hypersonic speeds. Currently, these simulations guzzle tens of hours of supercomputing time. But if Tumin’s theory is correct, engineers will soon get the same results from their office laptops. Tumin is working with Research Assistant Professor Simone Zuccher, of UA AME, to develop a software package that will allow designers to do this laptop-style analysis. The software will help them predict when and where the transitions from laminar to turbulent flow occur in engines and on surfaces operating at hypersonic speeds. "We developed our theory and arrived at what is called the ’transient growth mechanism,’" Tumin said. "The airflow is stable, but there are some tiny disturbances within it that can grow downstream. We can generate these downstream, streamwise vortices (spiraling flows) by using the correct amount of roughness in the right places. We can do this at an engine inlet, for instance, in order to trip the boundary layer and to have stable engine performance." "If we can understand the laminar-turbulent transition mechanism, we can predict the transition point accurately," Tumin said. "This is important for heat protection, where you want laminar flow. Otherwise, you need to add a lot of weight for thermal insulation because you have to assume turbulent flow at the surface when you do your design calculations. Similarly, engine designers would like to have a quick transition to turbulence to have a turbulent flow at an engine inlet."

Ultimately, better understanding the transition to turbulence at hypersonic speeds will allow designers to build lighter, faster, more efficient airplanes capable of traveling at even higher speeds of Mach 15 or more.

Contact Information:

Anatoli Tumin
Associate Professor
Aerospace and Mechanical Engineering
tumin@email.arizona.edu

Ed Stiles | UA College of Engineering
Further information:
http://uanews.org/engineering
http://www.nasa.gov/missions/research/x43-main.html
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht New material, manufacturing process use sun's heat for cheaper renewable electricity
22.10.2018 | Purdue University

nachricht 3D-printed lithium-ion batteries
18.10.2018 | American Chemical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>