Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT, Columbia begin new ’hot’ fusion experiment

05.01.2005


MIT and Columbia University students and researchers have begun operation of a novel experiment that confines high-temperature ionized gas, called plasma, using the strong magnetic fields from a half-ton superconducting ring inside a huge vessel reminiscent of a spaceship. The experiment, the first of its kind, will test whether nature’s way of confining high-temperature gas might lead to a new source of energy for the world.



First results from the Levitated Dipole Experiment (LDX) were presented at a meeting of the American Physical Society the week of Nov. 15. Scientists and students described more than 100 plasma discharges created within the new device, each lasting from five to 10 seconds. X-ray spectroscopy and visible photography recorded spectacular images of the hot, confined plasma and of the dynamics of matter confined by strong magnetic force fields.

A dedication for LDX, the United States’ newest approach to nuclear fusion, was held in late October. Fusion energy is advantageous because its hydrogen fuel is practically limitless and the resulting energy would be clean and would not contribute to global warming as does the burning of fossil fuels.


Scientists using the LDX experiment will conduct basic studies of confined high-temperature matter and investigate whether the plasma may someday be used to produce fusion energy on Earth. Fusion energy is the energy source of the sun and stars. At high temperature and pressure, light elements like hydrogen are fused together to make heavier elements, such as helium, in a process that releases large amounts of energy.

Powerful magnets, such as the ring in LDX, provide the magnetic fields needed to initiate, sustain and control the plasma in which fusion occurs. Because the shape of the magnetic force fields determines the properties of the confined plasma, several different fusion research experiments are under way throughout the world, including a second experiment at MIT, the Alcator C-Mod, and the HBT-EP experiment at Columbia University.

LDX tackles fusion with a unique approach, taking its cue from nature. The primary confining fields are created by a powerful superconducting ring about the size of a truck tire and weighing more than a half-ton that will ultimately be levitated within a large vacuum chamber. A second superconducting magnet located above the vacuum chamber provides the force necessary to support the weight of the floating coil. The resulting force field resembles the fields of the magnetized planets, such as Earth and Jupiter. Satellites have observed how these fields can confine plasma at hundreds of millions of degrees.

The LDX research team is led by Jay Kesner, senior scientist at MIT’s Plasma Science and Fusion Center who earned his Ph.D. from Columbia University in 1970, and Michael Mauel, a professor of applied physics at Columbia University who earned his degrees from MIT (S.B. 1978, S.M., Sc.D.).

Kesner and Mauel’s colleagues on the experiment include five graduate students (Alex Boxer, Jennifer Ellsworth, Ishtak Karim and Scott Mahar of MIT and Eugenio Oritz of Columbia) and two undergraduates (Austin Roach and Michelle Zimmermann of MIT). The team also includes Columbia scientists Darren Garnier and Alex Hansen, as well as Rick Lations, Phil Michael, Joseph Minervini, Don Strahan and Alex Zhukovsky of the Plasma Science and Fusion Center.

The work is sponsored by the Department of Energy’s Office of Fusion Energy Sciences.

A version of this article appeared in the December 8, 2004 issue of MIT Tech Talk (Volume 49, Number 12).

Elizabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht 'Stealth' material hides hot objects from infrared eyes
25.06.2018 | University of Wisconsin-Madison

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>