Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tech Developing Efficient Organic Solar Cell

14.12.2004


Researchers use pentacene to develop next-generation solar power



As the price of energy continues to rise, businesses are looking to renewable energy for cheaper sources of power. Making electricity from the most plentiful of these sources - the sun -can be expensive due to the high price of producing traditional silicon-based solar cells. Enter organic solar cells. Made from cheaper materials, their flexibility and feather-weight construction promise to open up new markets for solar energy, potentially powering everything from Radio-Frequency Identification (RFID) tags to iPods and laptop computers.

Researchers at the Georgia Institute of Technology have developed a new approach to creating lightweight organic solar cells. By using pentacene, researchers have been able to convert sunlight to electricity with high efficiency. The research appears in the November 29, 2004 issue of the journal Applied Physics Letters.


“We’ve demonstrated that using a crystalline organic film, pentacene, is a promising new approach to developing organic solar cells,” said Bernard Kippelen, professor in the Center for Organic Photonics and Electronics and the School of Electrical and Computer Engineering at Georgia Tech. “In our paper, we show that we’ve been able to convert solar energy into electricity with 2.7 percent efficiency. Since then, we’ve been able to demonstrate power conversion efficiencies of 3.4 percent and believe that we should reach 5 percent in the near future.”

What makes pentacene such a good material for organic solar cells, Kippelen explained, is that, unlike many of the other materials being studied for use in these cells, it’s a crystal. The crystal structure of atoms joined together in a regular pattern makes it easier for electricity to move through it than some other organic materials, which are more amorphous.

The research group, made up of Kippelen and research scientists Seunghyup Yoo and Benoit Domercq, used pentacene and C60, a form of carbon more popularly known as “buckyballs,” in the cells. Previous attempts by other groups using pentacene in solar cells combined the material with metals, rather than an organic molecule like C60.

“The metal-pentacene cells had very low efficiencies,” said Kippelen. “We decided we would pair out pentacene with an organic molecule because such a combination could generate larger currents.”

Once fully developed, organic solar cells could revolutionize the power industry. Their flexibility and minimal weight will allow them to be placed on almost anything from tents that would provide power to those inside, to clothing that would power personal electronic devices.

The solar cells are still at least five years away from residential applications, said Kippelen. But he estimates that they’ll be ready to use in smaller devices, such as RFID tags, used by some retailers to control inventory, within two years. Kippelen and other professors at the Center for Organic Photonics and Electronics started LumoFlex, a spin-off company based at Georgia Tech, to capitalize on the commercial applications of the research.

Tech founded the Center for Organic Photonics and Electronics in 2003, when Kippelen along with chemistry professors Seth Marder, Joe Perry and Jean-Luc Bredas came to Tech from the University of Arizona. The center teams up with the silicon-based research of the University Center for Excellence in Photovoltaics (UCEP) in Tech’s commitment to producing ground-breaking research and training in both organic and silicon solar cells.

“The silicon and organic photovoltaic groups are working together at Georgia Tech to accelerate the development of cost-effective solar cells to solve the energy and environmental problems simultaneously and reduce our dependence on foreign oil,” said Ajeet Rohatgi, director of UCEP and regent’s professor in the School of Electrical and Computer Engineering.

This year Tech began the Strategic Energy Initiative to carry out scientific and economic research and development on renewable energies like solar and wind power.

The research was funded by the National Science Foundation, the Office of Naval Research and the National Renewable Energy Laboratory.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>