Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Nanowire with a Surprise

18.10.2004


New research may advance the nanoelectronics field



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and their collaborators have discovered that a short, organic chain molecule with dimensions on the order of a nanometer (a billionth of a meter) conducts electrons in a surprising way: It regulates the electrons’ speed erratically, without a predictable dependence on the length of the wire. This information may help scientists learn how to use nanowires to create components for a new class of tiny electronic circuits.

The conducting chain molecule, or “nanowire,” that Smalley and his collaborators studied is composed of units of phenyleneethynylene (PE), which consists of hydrogen and carbon atoms. Like the links that make up a chain, PE units join together to form a nanowire known as oligophenyleneethynylene (OPE). PE, and therefore OPE, contains single, double, and triple carbon-carbon bonds.


The double and triple carbon-carbon bonds promote strong electronic interactions along OPE such that it conducts an electric current with low electrical resistance. This property makes OPE nanowires good candidates for components in nanoelectronic circuits, very small, fast circuits expected to replace those currently used in computers and other electronics.

Smalley and his collaborators found that as they increased the length of the OPE wire from one to four PE units, the electrons moved across the wire faster, slower, then faster again, and so on. In this way, OPE does not behave like a similar nanowire the group has also studied, called oligophenylenevinylene (OPV), which contains single and double carbon-carbon bonds. When they made OPV wires longer, the electrons’ speed remained the same. They observed the same result when they studied short wires made of alkanes, another group of hydrocarbon molecules that contains only single carbon-carbon bonds.

The researchers think that the unusual behavior of OPE may be due to its tendency to slightly change its three-dimensional shape. Increasing the wire’s length may trigger new shapes, which may slow down or speed up the electrons as they cross the wire.

This variable resistance could be a benefit. “If the odd behavior is due to the conformational variability of the OPE wires, figuring out a way to control the tendency of OPE to change its shape could be useful,” said Smalley. “For example, diodes and transistors are two types of devices based on variable electrical resistance.”

The scientists made another significant finding: They dramatically increased the rate at which the electrons moved across the wire by substituting a methyl hydrocarbon group onto the middle unit of a three-unit OPE wire. “Because OPE seems sensitive to this substitution, we hope to find another hydrocarbon group that may further increase the electrons’ speed, and therefore OPE’s ability to conduct electrons,” said Smalley.

Experimental Background

In the experiment, Smalley and his group created an OPE wire “bridge” between a gold electrode and a “donor-acceptor” molecule. To measure the electron transfer rate across the bridge, they used a technique they developed in which a laser rapidly heats up the electrode. This causes a change in the electrical potential (voltage) between the electrode and the donor-acceptor, which disrupts the motion of electrons crossing the bridge. The group used a very sensitive voltmeter to measure how quickly the voltage changed in response to the altered electron movement. From these measurements, they determined how fast the electrons were moving through the wire.

This research, performed in collaboration with Marshall Newton of the Brookhaven Chemistry Department and researchers at Stanford University, Clemson University, and Motorola, is funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science and the National Science Foundation.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>