Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking charge of molecular wires

23.08.2004


Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or components in solar energy storage systems. The scientists were studying how electric charge is distributed in polymer molecule chains that are several nanometers, or billionths of a meter, in length.



Brookhaven chemist John Miller, the study’s lead scientist, will present the group’s results on Sunday, August 22, 2004, at the 228th national meeting of the American Chemical Society in Philadelphia, Pennsylvania (Pennsylvania Convention Center, Ballroom B, 2:45 p.m.).

"Long molecules that can act as molecular wires, of which there are many variations, are one type of nanoscale object with the potential to lead to new technologies, due to their ability to conduct electricity and very small size," said Miller. "But unlike conventional metal wires, polymer nanowires need assistance in order to conduct."


"Using a cluster of high-energy electrons from an accelerator, we can quickly add an extra negative or positive charge to a polymer molecular wire. When the end of the wire contains a chemically-attached ’trap’ molecule, one where the electrons will be at a lower, more stable energy, the charge moves to it. This allows us to ’see’ that the wires conduct electrons quickly, and over long distances."

One potential application for this finding is in the solar energy industry, particularly in a new field called "plastic solar." In conventional solar cells, incoming solar energy is transferred to the electrons in a semiconducting material, such as silicon, which knocks many of them loose. These electrons are guided to an electrode, creating a current that can be drawn off and used.

The plastic solar movement aims to replace materials like silicon with polymer nanowires, which are cheaper and lighter. Another advantage of plastic solar cells is their physical versatility. Due to the flexible, bendable nature of polymer materials, plastic solar cells could be placed in areas of greatly varying size and surface type. Conventional cells are rigid and costly, and the current production method limits their size.

In plastic solar cells constructed to date, electrons must jump from one polymer wire to another in order to reach the electrodes. But as the electrons leave one wire in order to jump to the next, they encounter barriers, which require larger amounts of energy to traverse than the barriers that hinder electron movement within typical nanowires. This slows down the electrons.

Miller and his collaborators want to learn how to eliminate the barriers. But first, they must understand how the electrons move within single polymer wires -- the amount of energy the electrons need, for example. Later, this information can be used to choose the best polymer conductors and design structures for plastic solar cells.

The group observed electrons move down a polymer wire by immersing the wire in an organic fluid and shooting high-energy electrons through the fluid. The electrons were supplied by Brookhaven’s Laser-Electron Accelerator Facility (LEAF), which accelerates electrons to high energies for research applications. The energetic LEAF electrons either kick away some of the fluid molecules’ electrons or allow the molecules to give up "holes" -- mobile, empty spaces that carry positive charge. As a result, the submerged nanowire receives one of these electrons or holes.

"This new method injects extra negative or positive charges into the wires and allows us to observe the charges quickly diffuse across it. This observation is a key step toward developing polymer nanowires that are good conductors," Miller said.

In the future, Miller and his group also plan to look for ways to increase the conduction efficiency of the wires.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht How electric heating could save CO2 emissions
17.12.2018 | Technische Universität München

nachricht Data use draining your battery? Tiny device to speed up memory while also saving power
14.12.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>