Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free electron laser reaches 10 kW

02.08.2004


The Free-Electron Laser (FEL) achieved 10 kilowatts of infrared laser light, making it the most powerful tunable laser in the world.


The Free-Electron Laser (FEL), supported by the Office of Naval Research and located at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, achieved 10 kilowatts of infrared laser light in late July, making it the most powerful tunable laser in the world. The recently upgraded laser’s new capabilities will enhance defense and manufacturing technologies, and support advanced studies of chemistry, physics, biology, and more.

"No other laser can provide the same benefits to manufacturing, medical research, biology, and basic physics," said ONR’s Directed Energy Program Officer, Mr. Quentin Saulter. "The Navy has chosen the FEL because it has multi-mission capabilities. Its unique, high-power and 24-hour capabilities are ideal for Department of Defense, industrial, and scientific applications."

The FEL program began as the One-Kilowatt Demonstration FEL, which broke power records and made its mark as the world’s brightest high average power laser. It delivered 2.1 kilowatts (kW) of infrared light, more than twice it was initially designed to achieve, before it was taken offline in November 2001 for an upgrade to 10 kW. "Whenever a technology gains a factor of ten improvement in performance, the achievement opens the door to many new applications, some foreseen, and some are simply very pleasant surprises," said Christoph Leemann, Jefferson Lab Director. "We look forward to operating this exciting new machine and carrying out the many experiments planned for it."



The FEL provides intense beams of laser light that can be tuned to a precise wavelength, and which are more powerful than beams from a conventional laser. Conventional lasers are limited in the wavelength of light they emit by the source of the electrons (such as a gas or crystal) used within the laser. In the FEL, electrons are stripped from their atoms and then whipped up to high energies by a linear accelerator. From there, they are steered into a wiggler--a device that uses an electromagnetic field to shake the electrons, forcing them to release some of their energy in the form of photons. As in a conventional laser, the photons are bounced between two mirrors and then emitted as a coherent beam of light. However, FEL operators can adjust the wavelength of the laser’s emitted light by increasing or decreasing the energies of the electrons in the accelerator or the amount of shaking in the wiggler.

"As we cross the 10 kW milestone, our team at Jefferson Lab is grateful for the considerable support and encouragement we have received from the Navy, Air Force and our colleagues across the country," said Fred Dylla, Jefferson Lab FEL program manager.

ONR’s Quentin Saulter manages the FEL development effort in cooperation with the Naval Sea Systems Command (NAVSEA) Directed Energy and Electric Weapons Office, headed by Captain Roger McGinnis. ONR is also funding the operation and optimization of the 10 kW FEL, and has several experiments slated to begin in early fall. A laser materials damage study will be co-funded with the Office of the Secretary of Defense High Energy Laser Joint Technology Office (HEL-JTO). In another project, scientists from the Naval Research Laboratory will study laser propagation through the atmosphere, with an eye to new laser-based shipboard defense strategies.

The Navy is also interested in the ultraviolet and terahertz light that the FEL can produce at world-record powers. The Navy intends on using the lessons learned from the development of the 10 kW FEL to begin design and construction of a 100 kW FEL over the next four years. Eventually, the Navy plans on moving the 100 kW laser to an over water test site, and scaling the power up to megawatt levels.

Jennifer Huergo | EurekAlert!
Further information:
http://www.onr.navy.mil
http://www.jlab.org

More articles from Power and Electrical Engineering:

nachricht Lights, camera, action... the super-fast world of droplet dynamics
26.02.2020 | University of Leeds

nachricht Turbomachine expander offers efficient, safe strategy for heating, cooling
25.02.2020 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>