Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the future with nanoelectronics: a strategy for Europe

30.06.2004


To become the world’s most competitive powerhouse, Europe must lead the transition of the micro-electronics sector to the next generation of nano-electronics, with co-ordinated public and private investments of at least €6 billion per year. This is the message from a report drawn up by CEOs of leading companies and research organisations and presented today to European Research Commissioner Philippe Busquin and Enterprise and Information Society Commissioner Erkki Liikanen. Smarter and smaller electronics at the nano-meter scale managing vast amounts of data are becoming key components for many applications, from household appliances and consumer goods to automotive transport, health care and security, and ultimately ambient intelligence. The “Vision 2020: Nano-electronics at the centre of change” will lead to the launch of the European Nano-electronics Initiative Advisory Council (ENIAC) to be chaired by STMicroelectronics’ President and CEO Pasquale Pistorio. This European public-private partnership will identify a strategic research agenda for nano-electronics in Europe and implement it.

“Nanoelectronics is a strategic sector for Europe, with a potential for creating a significant number of highly skilled jobs and boosting growth and competitiveness in most other industrial sectors,” Commissioner Liikanen said. Today’s strategic initiative is vital if Europe’s industry is to remain at the forefront of global developments.”

“Europe cannot afford to miss the next generation of electronic applications that will be for our future economy what oil is for today’s economy,” Research Commissioner Busquin said. “Leading the transition to nano-electronics is a challenge that requires our best researchers to work together and our public and private investors to profit from economies of scale. Smaller and more functional electronic components make complex electronics disappear and help people to be creative and fully participate in the knowledge society.”



From microelectronics to nanoelectronics

The overall value of the microelectronics industry is around €140 billion, with electronics at €800 billion. In 2002, funding for micro-electronics in the Asia-Pacific region reached 62% of total capital spending, whereas it amounted to only 8% in Europe. The components on an integrated circuit are now so small that they are no longer measured in micrometers but in nanometers.

ENIAC is one of the Technology Platforms which are intended to define a common research agenda and mobilise a critical mass of national and European public and private resources. Developing nanoelectronics requires an interdisciplinary approach, world-class research and production facilities, and greater co-ordination of research.

Key vision 2020 recommendations

To achieve leadership in this sector, Europe must develop:

  • a competitive supply chain,
  • a research infrastructure for visionary and industrially relevant research, strategic public-private partnerships to mobilise a critical mass of resources,
  • a favourable legal and financial environment,
  • a skilled research, design and production workforce resulting from a highly specialised educational system.

Fabio Fabbi | EU Commission
Further information:
http://europa.eu.int
http://www.cordis.lu/ist/eniac
http://www.cordis.lu/nanotechnology

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>